12 research outputs found

    Interaction of Mitochondrial Polygenic Score and Lifestyle Factors in LRRK2 p.Gly2019Ser Parkinsonism.

    Get PDF
    peer reviewed[en] BACKGROUND: A mitochondrial polygenic score (MGS) is composed of genes related to mitochondrial function and found to be associated with Parkinson's disease (PD) risk. OBJECTIVE: To investigate the impact of the MGS and lifestyle/environment on age at onset (AAO) in LRRK2 p.Gly2019Ser parkinsonism (LRRK2-PD) and idiopathic PD (iPD). METHODS: We included N = 486 patients with LRRK2-PD and N = 9259 with iPD from the Accelerating Medicines Partnership® Parkinson's Disease Knowledge Platform (AMP-PD), Fox Insight, and a Tunisian Arab-Berber founder population. Genotyping data were used to perform the MGS analysis. Additionally, lifestyle/environmental data were obtained from the PD Risk Factor Questionnaire (PD-RFQ). Linear regression models were used to assess the relationship between MGS, lifestyle/environment, and AAO. RESULTS: Our derived MGS was significantly higher in PD cases compared with controls (P = 1.1 × 10-8 ). We observed that higher MGS was significantly associated with earlier AAO in LRRK2-PD (P = 0.047, β = -1.40) and there was the same trend with a smaller effect size in iPD (P = 0.231, β = 0.22). There was a correlation between MGS and AAO in LRRK2-PD patients of European descent (P = 0.049, r = -0.12) that was visibly less pronounced in Tunisians (P = 0.449, r = -0.05). We found that the MGS interacted with caffeinated soda consumption (P = 0.003, β = -5.65) in LRRK2-PD and with tobacco use (P = 0.010, β = 1.32) in iPD. Thus, patients with a high MGS had an earlier AAO only if they consumed caffeinated soda or were non-smokers. CONCLUSIONS: The MGS was more strongly associated with earlier AAO in LRRK2-PD compared with iPD. Caffeinated soda consumption or tobacco use interacted with MGS to predict AAO. Our study suggests gene-environment interactions as modifiers of AAO in LRRK2-PD

    Embracing Monogenic Parkinson's Disease: The MJFF Global Genetic PD Cohort

    Get PDF
    Background As gene-targeted therapies are increasingly being developed for Parkinson's disease (PD), identifying and characterizing carriers of specific genetic pathogenic variants is imperative. Only a small fraction of the estimated number of subjects with monogenic PD worldwide are currently represented in the literature and availability of clinical data and clinical trial-ready cohorts is limited. Objective The objectives are to (1) establish an international cohort of affected and unaffected individuals with PD-linked variants; (2) provide harmonized and quality-controlled clinical characterization data for each included individual; and (3) further promote collaboration of researchers in the field of monogenic PD. Results We collected 3888 variant carriers for our analyses, reported by 92 centers (42 countries) worldwide. Of the included individuals, 3185 had a diagnosis of PD (ie, 1306 LRRK2, 115 SNCA, 23 VPS35, 429 PRKN, 75 PINK1, 13 DJ-1, and 1224 GBA) and 703 were unaffected (ie, 328 LRRK2, 32 SNCA, 3 VPS35, 1 PRKN, 1 PINK1, and 338 GBA). In total, we identified 269 different pathogenic variants; 1322 individuals in our cohort (34%) were indicated as not previously published. Conclusions Within the MJFF Global Genetic PD Study Group, we (1) established the largest international cohort of affected and unaffected individuals carrying PD-linked variants; (2) provide harmonized and quality-controlled clinical and genetic data for each included individual; (3) promote collaboration in the field of genetic PD with a view toward clinical and genetic stratification of patients for gene-targeted clinical trials. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society

    Mitochondrial DNA heteroplasmy distinguishes disease manifestation in PINK1/PRKN-linked Parkinson’s disease

    Get PDF
    Biallelic mutations in PINK1/PRKN cause recessive Parkinson’s disease. Given the established role of PINK1/Parkin in regulating mitochondrial dynamics, we explored mitochondrial DNA (mtDNA) integrity and inflammation as disease modifiers in carriers of mutations in these genes. MtDNA integrity was investigated in a large collection of biallelic (n = 84) and monoallelic (n = 170) carriers of PINK1/PRKN mutations, idiopathic Parkinson’s disease patients (n = 67) and controls (n = 90). In addition, we studied global gene expression and serum cytokine levels in a subset. Affected and unaffected PINK1/PRKN monoallelic mutation carriers can be distinguished by heteroplasmic mtDNA variant load (AUC = 0.83, CI:0.74-0.93). Biallelic PINK1/PRKN mutation carriers harbor more heteroplasmic mtDNA variants in blood (p = 0.0006, Z = 3.63) compared to monoallelic mutation carriers. This enrichment was confirmed in iPSC-derived (controls, n = 3; biallelic PRKN mutation carriers, n = 4) and postmortem (control, n = 1; biallelic PRKN mutation carrier, n = 1) midbrain neurons. Lastly, the heteroplasmic mtDNA variant load correlated with IL6 levels in PINK1/PRKN mutation carriers (r = 0.57, p = 0.0074). PINK1/PRKN mutations predispose individuals to mtDNA variant accumulation in a dose- and disease-dependent manner

    Embracing monogenic Parkinson's disease: the MJFF Global Genetic PD Cohort

    Get PDF
    © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.Background: As gene-targeted therapies are increasingly being developed for Parkinson's disease (PD), identifying and characterizing carriers of specific genetic pathogenic variants is imperative. Only a small fraction of the estimated number of subjects with monogenic PD worldwide are currently represented in the literature and availability of clinical data and clinical trial-ready cohorts is limited. Objective: The objectives are to (1) establish an international cohort of affected and unaffected individuals with PD-linked variants; (2) provide harmonized and quality-controlled clinical characterization data for each included individual; and (3) further promote collaboration of researchers in the field of monogenic PD. Methods: We conducted a worldwide, systematic online survey to collect individual-level data on individuals with PD-linked variants in SNCA, LRRK2, VPS35, PRKN, PINK1, DJ-1, as well as selected pathogenic and risk variants in GBA and corresponding demographic, clinical, and genetic data. All registered cases underwent thorough quality checks, and pathogenicity scoring of the variants and genotype-phenotype relationships were analyzed. Results: We collected 3888 variant carriers for our analyses, reported by 92 centers (42 countries) worldwide. Of the included individuals, 3185 had a diagnosis of PD (ie, 1306 LRRK2, 115 SNCA, 23 VPS35, 429 PRKN, 75 PINK1, 13 DJ-1, and 1224 GBA) and 703 were unaffected (ie, 328 LRRK2, 32 SNCA, 3 VPS35, 1 PRKN, 1 PINK1, and 338 GBA). In total, we identified 269 different pathogenic variants; 1322 individuals in our cohort (34%) were indicated as not previously published. Conclusions: Within the MJFF Global Genetic PD Study Group, we (1) established the largest international cohort of affected and unaffected individuals carrying PD-linked variants; (2) provide harmonized and quality-controlled clinical and genetic data for each included individual; (3) promote collaboration in the field of genetic PD with a view toward clinical and genetic stratification of patients for gene-targeted clinical trials. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.Michael J. Fox Foundation for Parkinson's Research. Grant Number: ID 15015.02. NIHR Cambridge Biomedical Research Centre. Grant Number: BRC-1215-20014info:eu-repo/semantics/publishedVersio

    Interaction of mitochondrial polygenic score and environmental factors in LRRK2 p.Gly2019Ser parkinsonism 2023.01.02.23284113

    No full text
    The objective of our study was to investigate the impact of the mitochondrial polygenic score (MGS) and lifestyle/environmental data on age at onset in LRRK2 p.Gly2019Ser parkinsonism (LRRK2-PD) and idiopathic Parkinson\textquoterights disease (iPD).In this study, we included N=486 patients with LRRK2-PD and N=9259 patients with iPD from AMP-PD, Fox Insight, and a Tunisian Arab-Berber founder population. Genotyping data was utilized to perform the MGS analysis, using 14 Single Nucleotide Polymorphisms (SNPs) from genes causally associated with mitochondrial function and PD risk. Additionally, lifestyle and environmental data were obtained from the PD risk factor questionnaire (PD-RFQ). Correlation analyses and linear regression models were used to assess the relationship between MGS, lifestyle/environment, and AAO.We observed that higher MGS was associated with earlier AAO in patients with LRRK2-PD (p=4.0\texttimes10-4, β=-0.18) but not in patients with iPD. A correlation between MGS and AAO was visibly stronger in European ancestry LRRK2-PD patients (p=0.01, r=-0.16) than in Tunisian Arab-Berber patients (p=0.44, r=-0.05). We found that the MGS interacted with coffee (p=0.03, β=-0.38) and caffeinated soda consumption (p=0.03, β=-0.37) in LRRK2-PD and with caffeine soda consumption (p=0.047, β=-0.22) and pesticide exposure (p=0.02, β=-0.37) in iPD. Thus, patients with a high MGS had an earlier AAO only if they consumed caffeine or were exposed to pesticides.The MGS related to mitochondrial function was associated with AAO in LRRK2-PD but not iPD with an ethnic-specific effect. Caffeine consumption or pesticide exposure interacted with MGS to predict PD AAO. Our study suggests gene-environment interactions as modifiers of AAO in LRRK2-PD.Competing Interest StatementCK serves as a medical advisor to Centogene and Retromer Therapeutics and received speaking honoraria from Desitin. The remaining authors declare no conflict of interest.Funding StatementThis project was supported by the DFG RU ProtectMove (DFG FOR2488), the Michael J. Fox Foundation (MJFF-021227 \& MJFF-019271), and the Else Kroener-Fresenius-Stiftung.Author DeclarationsI confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.YesThe details of the IRB/oversight body that provided approval or exemption for the research described are given below:Ethical permission was given by the Ethical Committee of the Institut National de Neurologie and certified by the Ministry of Health, Tunisia.I confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.YesI understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).YesI have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.YesData sharing is not applicable to this article as no new data were created or analysed in this study. Data used in the preparation of this manuscript were obtained from the Fox Insight database (https://foxinsight-info.michaeljfox.org/insight/explore/insight.jsp) on 18/10/2020. For up-to-date information on the study, visit https://foxinsight-info.michaeljfox.org/insight/explore/insight.jsp. Data used in the preparation of this article were obtained from the Accelerating Medicine Partnership (AMP) Parkinson\textquoterights Disease (AMP PD) Knowledge Platform. For up-to-date information on the study, visit https://www.amp-pd.org

    Mitochondrial DNA heteroplasmy distinguishes disease manifestation in PINK1- and PRKN-linked Parkinson's disease 2022.05.17.22275087

    Get PDF
    Biallelic mutations in PINK1 and PRKN cause recessively inherited Parkinson's disease (PD). Though some studies suggest that PINK1/PRKN monoallelic mutations may not contribute to risk, deep phenotyping assessment showed that PINK1 or PRKN monoallelic pathogenic variants were at a significantly higher rate in PD compared to controls. Given the established role of PINK1 and Parkin in regulating mitochondrial dynamics, we explored mitochondrial DNA (mtDNA) integrity and inflammation as potential disease modifiers in carriers of mutations in these genes. MtDNA integrity, global gene expression and serum cytokine levels were investigated in a large collection of biallelic (n=84) and monoallelic (n=170) carriers of PINK1/PRKN mutations, iPD patients (n=67) and controls (n=90). Affected and unaffected PINK1/PRKN monoallelic mutation carriers can be distinguished by heteroplasmic mtDNA variant load (AUC=0.83, CI:0.74-0.93). Biallelic PINK1/PRKN mutation carriers harbor more heteroplasmic mtDNA variants in blood (p=0.0006, Z=3.63) compared to monoallelic mutation carriers. This enrichment was confirmed in iPSC-derived and postmortem midbrain neurons from biallelic PRKN-PD patients. Lastly, the heteroplasmic mtDNA variant load was found to correlate with IL6 levels in PINK1/PRKN mutation carriers (r=0.57, p=0.0074). PINK1/PRKN mutations predispose individuals to mtDNA variant accumulation in a dose- and disease-dependent manner. MtDNA variant load over time is a potential marker of disease manifestation in PINK1/PRKN mutation carriers.Competing Interest StatementThe authors have declared no competing interest.Funding StatementThe authors wish to thank the many patients and their families who volunteered, and the efforts of the many clinical teams involved. Funding has been obtained from the German Research Foundation (ProtectMove; FOR 2488, GR 3731/5-1; SE 2608/2-1; KO 2250/7-1), the Luxembourg National Research Fund in the ATTRACT (Model-IPD, FNR9631103), NCER-PD (FNR11264123) and INTER programmes (ProtectMove, FNR11250962; MiRisk-PD, C17/BM/11676395, NB 4328/2-1), the BMBF (MitoPD), the Hermann and Lilly Schilling Foundation, the European Community (SysMedPD), the Canadian Institutes of Health Research (CIHR), Peter and Traudl Engelhorn Foundation. Initial studies in Tunisia on familial parkinsonism were in collaboration with Lefkos Middleton, Rachel Gibson, and the GlaxoSmithKline PD Programme Team (2002-2005). We would like to thank Dr Helen Tuppen from the Welcome Trust Centre for Mitochondrial Research, Newcastle University, UK for providing us with the plasmid p7D1. Moreover, this project was supported by the high throughput/high content screening platform and HPC facility at the Luxembourg Centre for Systems Biomedicine, and the University of Luxembourg.Author DeclarationsI confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.YesThe details of the IRB/oversight body that provided approval or exemption for the research described are given below:University of Lubeck Ethics CommitteeI confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.YesI understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).Yes I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.YesAll data produced in the present study are available upon reasonable request to the author

    Embracing Monogenic Parkinson's Disease: The MJFF Global Genetic PD Cohort

    No full text
    Background: As gene-targeted therapies are increasingly being developed for Parkinson's disease (PD), identifying and characterizing carriers of specific genetic pathogenic variants is imperative. Only a small fraction of the estimated number of subjects with monogenic PD worldwide are currently represented in the literature and availability of clinical data and clinical trial-ready cohorts is limited. Objective: The objectives are to (1) establish an international cohort of affected and unaffected individuals with PD-linked variants; (2) provide harmonized and quality-controlled clinical characterization data for each included individual; and (3) further promote collaboration of researchers in the field of monogenic PD. Methods: We conducted a worldwide, systematic online survey to collect individual-level data on individuals with PD-linked variants in SNCA, LRRK2, VPS35, PRKN, PINK1, DJ-1, as well as selected pathogenic and risk variants in GBA and corresponding demographic, clinical, and genetic data. All registered cases underwent thorough quality checks, and pathogenicity scoring of the variants and genotype–phenotype relationships were analyzed. Results: We collected 3888 variant carriers for our analyses, reported by 92 centers (42 countries) worldwide. Of the included individuals, 3185 had a diagnosis of PD (ie, 1306 LRRK2, 115 SNCA, 23 VPS35, 429 PRKN, 75 PINK1, 13 DJ-1, and 1224 GBA) and 703 were unaffected (ie, 328 LRRK2, 32 SNCA, 3 VPS35, 1 PRKN, 1 PINK1, and 338 GBA). In total, we identified 269 different pathogenic variants; 1322 individuals in our cohort (34%) were indicated as not previously published. Conclusions: Within the MJFF Global Genetic PD Study Group, we (1) established the largest international cohort of affected and unaffected individuals carrying PD-linked variants; (2) provide harmonized and quality-controlled clinical and genetic data for each included individual; (3) promote collaboration in the field of genetic PD with a view toward clinical and genetic stratification of patients for gene-targeted clinical trials

    Embracing monogenic parkinson's disease:the MJFF global genetic PD cohort

    Get PDF
    Background: As gene-targeted therapies are increasingly being developed for Parkinson's disease (PD), identifying and characterizing carriers of specific genetic pathogenic variants is imperative. Only a small fraction of the estimated number of subjects with monogenic PD worldwide are currently represented in the literature and availability of clinical data and clinical trial-ready cohorts is limited. Objective: The objectives are to (1) establish an international cohort of affected and unaffected individuals with PD-linked variants; (2) provide harmonized and quality-controlled clinical characterization data for each included individual; and (3) further promote collaboration of researchers in the field of monogenic PD. Methods: We conducted a worldwide, systematic online survey to collect individual-level data on individuals with PD-linked variants in SNCA, LRRK2, VPS35, PRKN, PINK1, DJ-1, as well as selected pathogenic and risk variants in GBA and corresponding demographic, clinical, and genetic data. All registered cases underwent thorough quality checks, and pathogenicity scoring of the variants and genotype–phenotype relationships were analyzed. Results: We collected 3888 variant carriers for our analyses, reported by 92 centers (42 countries) worldwide. Of the included individuals, 3185 had a diagnosis of PD (ie, 1306 LRRK2, 115 SNCA, 23 VPS35, 429 PRKN, 75 PINK1, 13 DJ-1, and 1224 GBA) and 703 were unaffected (ie, 328 LRRK2, 32 SNCA, 3 VPS35, 1 PRKN, 1 PINK1, and 338 GBA). In total, we identified 269 different pathogenic variants; 1322 individuals in our cohort (34%) were indicated as not previously published. Conclusions: Within the MJFF Global Genetic PD Study Group, we (1) established the largest international cohort of affected and unaffected individuals carrying PD-linked variants; (2) provide harmonized and quality-controlled clinical and genetic data for each included individual; (3) promote collaboration in the field of genetic PD with a view toward clinical and genetic stratification of patients for gene-targeted clinical trials
    corecore