2,820 research outputs found
Environmental study of ERTS-1 imagery: Lake Champlain and Vermont
Environmental concerns of the State of Vermont currently being stressed include water quality in Lake Champlain and a state-wide land use and capability plan. Significant results obtained from ERTS-1 relate directly to the above concerns. Industrial water pollution and turbidity in Lake Champlain have been identified and mapped and the ERTS pollution data will be used in the developing court suit which Vermont has initiated against the polluters. ERTS imagery has also provided a foundation for updating and revising land use inventories. Major classes of land use have been identified and mapped, and substantial progress has been made toward the mapping of such land use divisions as crop and forest type, and wetlands
Spectral geometry as a probe of quantum spacetime
Employing standard results from spectral geometry, we provide strong evidence
that in the classical limit the ground state of three-dimensional causal
dynamical triangulations is de Sitter spacetime. This result is obtained by
measuring the expectation value of the spectral dimension on the ensemble of
geometries defined by these models, and comparing its large scale behaviour to
that of a sphere (Euclidean de Sitter). From the same measurement we are also
able to confirm the phenomenon of dynamical dimensional reduction observed in
this and other approaches to quantum gravity -- the first time this has been
done for three-dimensional causal dynamical triangulations. In this case, the
value for the short-scale limit of the spectral dimension that we find is
approximately 2. We comment on the relevance of these results for the
comparison to asymptotic safety and Horava-Lifshitz gravity, among other
approaches to quantum gravity.Comment: 25 pages, 6 figures. Version 2: references to figures added,
acknowledgment added
Human Roughness Perception and Possible Factors Effecting Roughness Sensation
Surface texture sensation is significant for business success, in particular for solid surfaces for most of the materials; including foods, furniture or fabrics. Applications of roughness perception are still unknown, especially under different conditions such as lubricants with varying viscosities, different temperatures, or under different force loads during the observation of the surface. This work aims to determine the effect of those unknown factors, with applied sensory tests on 62 healthy participants. Roughness sensation of fingertip was tested under different lubricants including water and diluted syrup solutions at room temperature (25oC) and body temperature (37oC) by using simple pairwise comparison in order to observe the just noticeable difference threshold and perception levels. Additionally in this research applied force load during roughness observation was tested with pair-wise ranking method to illustrate its possible effect on the human sensation. Obtained results showed that human roughness discrimination capability reduces with an increasing viscosity of the lubricant, where the temperature was not found to be significant. Moreover, the increase in the applied force load showed an increase in the sensitivity of roughness discrimination capability. Observed effects of the applied factors were also used for estimating the oral sensation of texture during eating. These findings are significant for our fundamental understanding to the texture perception, but also could find applications in the material sciences which may include food sciences that needs information about texture perception for the development of new foods with controlled textural features
Efficacy of Interactive Internet-Based Education in Structural Timber Design
While traditional teaching methods (e.g., real-time, synchronous lectures) have proven effective for training future engineers, the Internet provides an avenue to reinforce the material and augment student learning, comprehension, and retention of material. This paper presents the integration and assessment of a library of interactive instructional modules specifically for a senior-level undergraduate elective course in civil engineering. An ongoing, comprehensive assessment process was implemented in the fall 1999 semester. The results of this quantitative assessment indicate that the use of well designed and pedagogically sound Internet-based supplemental modules provide students with a better understanding of course material. However, when Internet-based content does not promote critical thinking, little increase in the student performance and understanding of the material is realized. Interactive Web-based instruction should not be viewed as a “replacement” to traditional instruction, but rather a tool that provides a broader and more dynamic environment for students with a variety of learning styles
A Bell Inequality Analog in Quantum Measure Theory
One obtains Bell's inequalities if one posits a hypothetical joint
probability distribution, or {\it measure}, whose marginals yield the
probabilities produced by the spin measurements in question. The existence of a
joint measure is in turn equivalent to a certain causality condition known as
``screening off''. We show that if one assumes, more generally, a joint {\it
quantal measure}, or ``decoherence functional'', one obtains instead an
analogous inequality weaker by a factor of . The proof of this
``Tsirel'son inequality'' is geometrical and rests on the possibility of
associating a Hilbert space to any strongly positive quantal measure. These
results lead both to a {\it question}: ``Does a joint measure follow from some
quantal analog of `screening off'?'', and to the {\it observation} that
non-contextual hidden variables are viable in histories-based quantum
mechanics, even if they are excluded classically.Comment: 38 pages, TeX. Several changes and added comments to bring out the
meaning more clearly. Minor rewording and extra acknowledgements, now closer
to published versio
Quantum Dynamics without the Wave Function
When suitably generalized and interpreted, the path-integral offers an
alternative to the more familiar quantal formalism based on state-vectors,
selfadjoint operators, and external observers. Mathematically one generalizes
the path-integral-as-propagator to a {\it quantal measure} on the space
of all ``conceivable worlds'', and this generalized measure expresses
the dynamics or law of motion of the theory, much as Wiener measure expresses
the dynamics of Brownian motion. Within such ``histories-based'' schemes new,
and more ``realistic'' possibilities open up for resolving the philosophical
problems of the state-vector formalism. In particular, one can dispense with
the need for external agents by locating the predictive content of in its
sets of measure zero: such sets are to be ``precluded''. But unrestricted
application of this rule engenders contradictions. One possible response would
remove the contradictions by circumscribing the application of the preclusion
concept. Another response, more in the tradition of ``quantum logic'', would
accommodate the contradictions by dualizing to a space of
``co-events'' and effectively identifying reality with an element of this dual
space.Comment: plainTeX, 24 pages, no figures. To appear in a special volume of {\it
Journal of Physics A: Mathematical and General} entitled ``The Quantum
Universe'' and dedicated to Giancarlo Ghirardi on the occasion of his 70th
birthday. Most current version is available at
http://www.physics.syr.edu/~sorkin/some.papers/ (or wherever my home-page may
be
- …