214 research outputs found

    Foot pressure distributions during walking in African elephants (Loxodonta africana)

    Get PDF
    Elephants, the largest living land mammals, have evolved a specialized foot morphology to help reduce locomotor pressures while supporting their large body mass. Peak pressures that could cause tissue damage are mitigated passively by the anatomy of elephants' feet, yet this mechanism does not seem to work well for some captive animals. This study tests how foot pressures vary among African and Asian elephants from habitats where natural substrates predominate but where foot care protocols differ. Variations in pressure patterns might be related to differences in husbandry, including but not limited to trimming and the substrates that elephants typically stand and move on. Both species' samples exhibited the highest concentration of peak pressures on the lateral digits of their feet (which tend to develop more disease in elephants) and lower pressures around the heel. The trajectories of the foot's centre of pressure were also similar, confirming that when walking at similar speeds, both species load their feet laterally at impact and then shift their weight medially throughout the step until toe-off. Overall, we found evidence of variations in foot pressure patterns that might be attributable to husbandry and other causes, deserving further examination using broader, more comparable samples

    Women and the Class Struggle (1978)

    Get PDF

    Women and the Class Struggle (1978)

    Get PDF

    Practical constraints on real time Bayesian filtering for NDE applications

    Get PDF
    An experimental evaluation of Bayesian positional filtering algorithms applied to mobile robots for Non-Destructive Evaluation is presented using multiple positional sensing data – a real time, on-robot implementation of an Extended Kalman and Particle filter was used to control a robot performing representative raster scanning of a sample. Both absolute and relative positioning were employed – the absolute being an indoor acoustic GPS system that required careful calibration. The performance of the tracking algorithms are compared in terms of computational cost and the accuracy of trajectory estimates. It is demonstrated that for real time NDE scanning, the Extended Kalman Filter is a more sensible choice given the high computational overhead for the Particle filter

    Fast and flexible Bayesian species distribution modelling using Gaussian processes

    Get PDF
    1. Species distribution modelling (SDM) is widely used in ecology, and predictions of species distributions inform both policy and ecological debates. Therefore, methods with high predictive accuracy and those that enable biological interpretation are preferable. Gaussian processes (GPs) are a highly flexible approach to statistical modelling and have recently been proposed for SDM. GP models fit smooth, but potentially complex response functions that can account for high-dimensional interactions between predictors. We propose fitting GP SDMs using deterministic numerical approximations, rather than Markov chain Monte Carlo methods in order to make GPs more computationally efficient and easy to use. 2. We introduce GP models and their application to SDM, illustrate how ecological knowledge can be incorporated into GP SDMs via Bayesian priors and formulate a simple GP SDM that can be fitted efficiently. This model can be fitted either by learning the hyperparameters or by using a fixed approximation to them. Using a subset of the North American Breeding Bird Survey data set, we compare the out-of-sample predictive accuracy of these models with several commonly used SDM approaches for both presence/absence and presence-only data. 3. Predictive accuracy of GP SDMs fitted by Laplace approximation was greater than boosted regression trees, generalized additive models (GAMs) and logistic regression when trained on presence/absence data and greater than all of these models plus MaxEnt when trained on presence-only data. GP SDMs fitted using a fixed approximation to hyperparameters were no less accurate than those with MAP estimation and on average 70 times faster, equivalent in speed to GAMs. 4. As well as having strong predictive power for this data set, GP SDMs offer a convenient method for incorporating prior knowledge of the species' ecology. By fitting these methods using efficient numerical approximations, they may easily be applied to large data sets and automatically for many species. An r package, GRaF, is provided to enable SDM users to fit GP models

    Adaptive Path Planning for Depth Constrained Bathymetric Mapping with an Autonomous Surface Vessel

    Full text link
    This paper describes the design, implementation and testing of a suite of algorithms to enable depth constrained autonomous bathymetric (underwater topography) mapping by an Autonomous Surface Vessel (ASV). Given a target depth and a bounding polygon, the ASV will find and follow the intersection of the bounding polygon and the depth contour as modeled online with a Gaussian Process (GP). This intersection, once mapped, will then be used as a boundary within which a path will be planned for coverage to build a map of the Bathymetry. Methods for sequential updates to GP's are described allowing online fitting, prediction and hyper-parameter optimisation on a small embedded PC. New algorithms are introduced for the partitioning of convex polygons to allow efficient path planning for coverage. These algorithms are tested both in simulation and in the field with a small twin hull differential thrust vessel built for the task.Comment: 21 pages, 9 Figures, 1 Table. Submitted to The Journal of Field Robotic

    RNA-Seq of Huntington's disease patient myeloid cells reveals innate transcriptional dysregulation associated with proinflammatory pathway activation

    Get PDF
    Innate immune activation beyond the central nervous system is emerging as a vital component of the pathogenesis of neurodegeneration. Huntington's disease (HD) is a fatal neurodegenerative disorder caused by a CAG repeat expansion in the huntingtin gene. The systemic innate immune system is thought to act as a modifier of disease progression; however, the molecular mechanisms remain only partially understood. Here we use RNA-sequencing to perform whole transcriptome analysis of primary monocytes from thirty manifest HD patients and thirty-three control subjects, cultured with and without a proinflammatory stimulus. In contrast with previous studies that have required stimulation to elicit phenotypic abnormalities, we demonstrate significant transcriptional differences in HD monocytes in their basal, unstimulated state. This includes previously undetected increased resting expression of genes encoding numerous proinflammatory cytokines, such as IL6 Further pathway analysis revealed widespread resting enrichment of proinflammatory functional gene sets, while upstream regulator analysis coupled with Western blotting suggests that abnormal basal activation of the NFĸB pathway plays a key role in mediating these transcriptional changes. That HD myeloid cells have a proinflammatory phenotype in the absence of stimulation is consistent with a priming effect of mutant huntingtin, whereby basal dysfunction leads to an exaggerated inflammatory response once a stimulus is encountered. These data advance our understanding of mutant huntingtin pathogenesis, establish resting myeloid cells as a key source of HD immune dysfunction, and further demonstrate the importance of systemic immunity in the potential treatment of HD and the wider study of neurodegeneration
    corecore