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Summary

1. Species distribution modelling (SDM) is widely used in ecology, and predictions of species distributions

inform both policy and ecological debates. Therefore, methods with high predictive accuracy and those that

enable biological interpretation are preferable. Gaussian processes (GPs) are a highly flexible approach to statis-

tical modelling and have recently been proposed for SDM. GP models fit smooth, but potentially complex

response functions that can account for high-dimensional interactions between predictors. We propose fitting

GP SDMs using deterministic numerical approximations, rather than Markov chain Monte Carlo methods in

order tomakeGPsmore computationally efficient and easy to use.

2. We introduce GP models and their application to SDM, illustrate how ecological knowledge can be incorpo-

rated into GP SDMs via Bayesian priors and formulate a simple GP SDM that can be fitted efficiently. This

model can be fitted either by learning the hyperparameters or by using a fixed approximation to them. Using a

subset of the North American Breeding Bird Survey data set, we compare the out-of-sample predictive accuracy

of these models with several commonly used SDM approaches for both presence/absence and presence-only data.

3. Predictive accuracy of GP SDMs fitted by Laplace approximation was greater than boosted regression trees,

generalized additive models (GAMs) and logistic regression when trained on presence/absence data and greater

than all of thesemodels plusMaxEntwhen trained on presence-only data. GP SDMs fitted using a fixed approxi-

mation to hyperparameters were no less accurate than those with MAP estimation and on average 70 times fas-

ter, equivalent in speed toGAMs.

4. As well as having strong predictive power for this data set, GP SDMs offer a convenient method for incorpo-

rating prior knowledge of the species’ ecology. By fitting thesemethods using efficient numerical approximations,

they may easily be applied to large data sets and automatically for many species. An R package, GRaF, is pro-

vided to enable SDMusers to fitGPmodels.

Key-words: boosted regression trees, Gaussian processes, generalized additive models, MaxEnt,

species distributionmodels

Introduction

Species distribution models (SDMs) quantify the distribution

of species using environmental conditions as predictors. Typi-

cally, these models use gridded data sets of environmental vari-

ables and records of the distribution of a given species to

generate maps of the species’ predicted distribution. In recent

years, SDMs have become some of the most widely usedmeth-

ods in ecology (Elith & Leathwick 2009), providing essential

tools for both theoretical and applied research. Among other

applications, SDMs are used to investigate drivers of global

biodiversity patterns and to guide conservation policy and

public health interventions (Lehmann, Leathwick & Overton

2002; Sinclair,White &Newell 2010; Sinka et al. 2010).

A wide range of different statistical models have been sug-

gested for use in SDMs, ranging from relatively simple ‘en-

velope’ models and commonly used statistical methods such

as logistic regression to more complex methods such as those

developed in the field of machine learning (Elith & Leathwick

2009). These approaches have a number of features which

determine their suitability to model species distributions.

These include an ability to represent complex effects of differ-

ent predictors (such as high-dimensional and nonlinear inter-

actions between predictors) on a species’ distribution (Elith

et al. 2006); susceptibility to overfitting to training data

(Wenger & Olden 2012); and the capacity to incorporate

existing knowledge of the species’ ecology (Murray et al.

2009). SDMs are sometimes required to be fitted in large

batches for multiple species, for example in order to make

predictions of species richness (Ferrier & Guisan 2006) or to

understand relative vulnerability of species to environmental

change (Huntley et al. 2008). Procedures that are computa-

tionally efficient are therefore preferable. Additionally, the

ability to robustly quantify uncertainty in predictions from

an SDM is desirable (Guisan & Zimmermann 2000; Elith,

Burgman & Regan 2002).*Correspondence author. E-mail: nick.golding.research@gmail.com
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Gaussian processes (GPs, also referred to as Gaussian ran-

dom fields) provide a flexible approach to fitting complex sta-

tistical models (Rasmussen & Williams 2006) and offer

solutions tomany of the issues related to SDMs.GPs have seen

occasional use in ecology for modelling population dynamics

(Patil 2007; Sigourney, Munch & Letcher 2012) and have

recently been proposed as an alternative approach for SDM

(Vanhatalo, Veneranta &Hudd 2012).Whilst GPmodels have

so far been applied to presence/absence data for SDM, GP

models can also be fitted with likelihoods applicable for count

and presence-only data (Diggle et al. 2013).

Gaussian process models are often fitted via Bayesian infer-

ence, typically requiring the use ofMarkov chainMonte Carlo

(MCMC)methods.WhilstMCMC is a useful approach for fit-

ting complex models, it can be very computationally expensive

when applied to GP models (Rue, Martino & Chopin 2009)

and requires an experienced user to supervise the model fitting

process. These limitations make GP SDM models fitted using

MCMC infeasible for themany SDMuserswithout experience

using MCMC and for applications that require running large

batches of models. Computationally efficient deterministic

inference procedures such as Laplace approximation and

expectation propagation have been developed to overcome

these problems for GP models (Rasmussen & Williams 2006).

Whereas approximation error inMCMCschemes can bemade

arbitrarily small by increasing the number of iterations, deter-

ministic approaches are subject to a fixed approximation error

that may impinge on predictive accuracy. In addition, many of

the proposed methods estimate a fixed set of model hyperpa-

rameters [i.e. maximum-likelihood or maximum a posteriori

(MAP) inference], rather than integrating across full posterior

distributions for these hyperparameters as in a full Bayesian

analysis.We propose that in spite of these simplifying assump-

tions, GPmodels fitted by deterministic approximate inference

are a promisingmethod for SDManalyses.

Below, we illustrate howGP SDMmodels work in both sta-

tistical and ecological terms and demonstrate how they provide

solutions to some problems commonly encountered in distri-

bution modelling. We then compare their predictive ability

with other commonly used approaches in a case study using

bird occurrence data from the North American Breeding Bird

Survey (BBS). Finally, the advantages and limitations of GPs

and potential avenues for future enhancements of the

approach as applied to SDMs are discussed.

Statistical explanation ofGPmodels

As with most statistical models, SDMs use data to learn an

underlying function which takes as input a set of values of one

or more predictors and outputs a single response variable. In

the case of SDM, this response variable is typically the proba-

bility of presence of the species. Once fitted, this function can

be used to convert any set of values of these environmental

variables into the expected value of the response variable,

enabling prediction.

More formally, for a presence/absence model with binary

response vector y indicating species presence or absence at n

locations and corresponding n-by-m design matrix x giving the

values of the m predictor variables across these locations (xi
denoting the ith row of thismatrix), wemightmodel the proba-

bility of presence pi for a given location to be some transforma-

tion g() (the link function) of an underlying latent variable zi.

We then model zi to be the output of a function f, evaluated on

a corresponding row of the designmatrix:

yi �BernoulliðpiÞ
pi ¼ gðziÞ
zi ¼ fðxiÞ

eqn 1

The choice of model used to estimate f therefore defines the

shape of the resulting function. Figure 1 illustrates using simu-

lated data themodelled response surfaces fitted by aGPmodel,

a generalized additive model (GAM) with univariate smooth-

ers and a boosted regression tree (BRT) model. Whilst the

BRT captures the nonlinear (banana-shaped) interaction

between the predictors, the estimated surface is highly jagged

by comparison with the other models. By contrast, the GAM

fits a smooth surface but due its additive structure is unable to

capture the nonlinear interaction between the predictors. The

GP model fits a smooth surface whilst correctly capturing the

interaction.

Many SDMs attempt to specify this function between pre-

dictors and the response variable by fitting a parametric equa-

tion. Once the ‘best’ set of equation parameters has been

learned from the data, the function can then be completed with

new predictor values tomake predictions. Instead ofmodelling

this function by learning parameters of a fixed equation, GP

models instead consider the unknown function itself to be a

single realization of an underlying stochastic process, which is

modelled as aGP.

DEFIN ING A GP

Under a GP model for this latent function f(), each latent vari-

able zi is considered to follow a Gaussian distribution with

mean li and variance r2
i . These response variables are not

independent, however, but are subject to some pairwise corre-

lationCij between any two responses zi and zj. With more than

two dependent variables, this structure is more concisely

expressed as a multivariate Gaussian distribution with vector

response variable z, vector mean l and symmetric, square

covariance matrix Σ. Σ can be constructed from the vector of

marginal variance parameters r2 and symmetric positive defi-

nite correlationmatrixC of dimension n, following the identity

Σ = diag(r)Cdiag(r)’.
Since this model will likely have far more correlation

parameters than observations (C having n(n � 1)/2 unique

elements), learning each of these correlation parameters

independently is not feasible. Instead, the covariances Σij
between pairs of response variables are themselvesmodelled

as a parametric function – the covariance function k() – of

corresponding predictor values xi and xj, given some param-

eters hk. Similarly, the mean vector l can also be defined by
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a parametric function – the mean function m() – over xi
given parameters hm. When evaluated on a data set of fixed

size, the GP is therefore defined as the following multivari-

ate normal distribution:

z�Nðl;RÞ
l ¼ mðx; hmÞ
R ¼ kðx; x0; hkÞ

eqn 2

However, since the elements of this distribution are con-

trolled by functions defined over a continuous space (the sup-

port of x), each draw from the GP can be considered a

function of x. Hence, GPs are often referred to as infinite-

dimensional Gaussian distributions, or probability distribu-

tions over functions. TheGP structure can therefore be written

more concisely for the continuous case [following the notation

of Rasmussen&Williams (2006)] as:

fðxÞ�GPðmðxÞ; kðx; x0ÞÞ: eqn 3

A SIMPLE GP SDM

Throughout the remainder of this paper, we consider the fol-

lowing relatively simple GP model applicable to presence/ab-

sence SDM:

yi �BernoulliðpiÞ
pi ¼ UðziÞ
z ¼ fðxÞ
fðxÞ�GPðmðxÞ;Kseðx; x0ÞÞ;

eqn 4

where Φ(.) denotes the probit link function (the logit link

could also be used), m() is a mean function and kse() is the

squared-exponential covariance function with vector parame-

ter l of length m giving the characteristic lengthscales for each

predictor. The parameters in l are considered hyperparameters

of themodel.We define kse() as:

kseðx; xÞ ¼ exp �r2

2

� �

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXm
j¼1

xj � x0j
l2j

 !2
vuut eqn 5

Note that the squared-exponential kernel commonly also

has a variance parameter; however, the marginal variances of z

are not identifiable from Bernoulli-distributed data and the

variance is therefore fixed at one. There is a wide array of dif-

ferent covariance functions that we could use here, but we opt

for the squared-exponential covariance function since it is easy

to parameterize and produces ecologically plausible smooth

curves (Rasmussen&Williams 2006).

The simplemodel above could easily be extended to different

SDMuse cases bymodifying the likelihood term. For example,

a Poisson point process likelihood for presence-only data could

be used instead (Warton & Shepherd 2010), corresponding to

a log-Gaussian Cox process spatial model (Diggle et al. 2013)

but with the function modelled by the GP acting over environ-

mental rather than geographic space.

INFERENCE ON GPS

The hierarchical and correlated nature of the GPmodel means

that inference is somewhat more involved than for other statis-

tical models. The inference procedure can be considered in two

distinct parts: inference over the latent variables z given a set of

kernel hyperparameters and inference over the hyperparame-

ters themselves.

Fig. 1. Predictive surfaces fitted by boosted

regression trees (BRT), a generalized additive

model with univariate smoothers (GAM) and

a GP model to simulated data with a strong

nonlinear interaction. The true surface repre-

sents the probability of presence of a hypothet-

ical species in response to temperature and

rainfall. Models were fitted to 1000 random

presence/absence observations drawn from

the true probability surface (a mixture of

Gaussians).
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Inference over latent variables

Given a fixed set of hyperparameters l, the GP can be consid-

ered a prior distribution over the latent parameters z. Learning

z, given these hyperparameters and the observed data y (re-

sponses) and x (predictors), is therefore carried out by applying

Bayes theorem. The parameters of the posterior distribution

over z can then be estimated for any x to yield the posterior dis-

tribution over the corresponding elements of z.

If y follows a Gaussian distribution, it can be considered a

direct observation of f(x) and an analytic solution to the GP

posterior can be computed [details are given in Rasmussen &

Williams (2006)]. Where y follows some non-Gaussian distri-

bution, as in the GP SDM case, no analytical solution is avail-

able and inference must be carried out by some approximation

scheme. Several efficient procedures have been developed for

inference in this case, including Laplace approximation (used

throughout this paper), expectation propagation and varia-

tional inference (Rasmussen &Williams 2006; Hensman, Fusi

&Lawrence 2013).

If the GP SDM is fitted with fixed hyperparameters deter-

mined by the user, this amounts to a fully Bayesianmodel with

the lengthscales defining the model prior. These lengthscales

may be used to incorporate ecological knowledge into the

SDM, and their behaviour is illustrated below. Rather than

specifying them a priori, it may instead be preferable to learn

these hyperparameters from the data.

Inference over hyperparameters

If the lengthscales are learned from the data, the GP then

becomes a layer in a hierarchical model, rather than a prior.

Such a hierarchical model may fitted in either amaximum-like-

lihood, a fully Bayesian or a partially Bayesian (MAP) frame-

work.

Whilst the likelihood for the latent variables p(y|z) is trivial
to compute, calculation of the likelihood for the lengthscale

hyperparameters p(y|l) requires marginalization of the latent

variables z:

pðyjlÞ ¼
Z

pðyjzÞpðzjlÞdz eqn 6

As with inference for the latent variables, themarginal likeli-

hood is analytically tractable for the Gaussian likelihood, but

must be approximated in the GP SDM case, using the numeri-

cal approximations to the posterior density of z. Thismarginal-

ization is analogous to restricted maximum-likelihood

estimation in generalized mixed-effects models and has a simi-

lar penalization effect to other approaches such as lasso or

ridge regression.

Maximum-likelihood inference can therefore be carried out

by numerical optimization of the marginal likelihood to iden-

tify an optimal set of hyperparameters. Alternatively, Bayesian

inference over this hierarchical model may then be carried out

with the specification of further prior distributions over the

hyperparameters. A fully Bayesian treatment of this model

would necessitate consideration of the probability distribution

over these hyperparameters and integrating out this distribu-

tion whenmaking predictions. This was the approach taken by

Vanhatalo, Veneranta & Hudd (2012) in their paper applying

a Bayesian GP model to SDM. Unfortunately, this requires

computationally intensive inference procedures such as

MCMC, which we aim to avoid. Integrated nested Laplace

approximation (Rue, Martino & Chopin 2009) may provide

an efficient procedure for Bayesian inference on GP models in

certain circumstances, though available software (Lindgren &

Rue 2015; Rue et al. 2015) does not enable users to fit the high-

dimensional GPs required for a GP SDM analysis, only allow-

ing for two-dimensionalGPs.

Alternatively, MAP inference (maximizing the marginal

posterior density of the model) enables the incorporation of

prior knowledge over hyperparameters whilst being much less

computationally intensive than fully Bayesian inference. In the

empirical case study below, we compare GP SDMs with fixed

lengthscales andwith lengthscales selected byMAP inference.

Ecological explanation ofGPmodels

Fitting and interpreting any SDM require an understanding of

how the different model components relate to the ecology of a

given species. Next, we provide a more intuitive illustration of

how inference for GP models differs from other SDMs, using

as an example the effect of temperature on the probability of

presence of a hypothetical species.

COVARIANCE FUNCTION

The range of function shapes allowed by the GP depends on

the covariance function, which relates environmental values to

expected correlations in the response variables at different

locations. As with most widely used covariance functions, the

squared-exponential covariance function calculates these

covariances as a function of the multivariate Euclidean dis-

tance between predictor values at these locations. In order to

construct theGP, the first step is therefore to calculate the envi-

ronmental distances between observations. In our example,

the environmental distances are simply the difference in tem-

perature between each pair of sites (Fig. 2a). The lengthscales

of the kernel function then dictate how the correlation between

probabilities of occurrence at pairs of observations decays with

the environmental distance between them and therefore the

complexity of the fitted response curves. Figure 2b illustrates

how a squared-exponential covariance function converts tem-

perature difference to expected correlation given three different

lengthscales. Assuming a lengthscale of one degree Celsius, the

expected correlation between two observations with a one-

degree difference in temperature is around 0�6, whereas with a

difference of two degrees this drops to around 0�14. With a

longer (higher valued) lengthscale, these expected correlations

will be higher, resulting in a less complex fitted line (Fig. 3).

In a practical application of a GP model, these lengthscales

may either be specified in advance or may be estimated from

the data. In either case, the lengthscale parameters provide a
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mechanism by which to inform the model of the ecology of the

species being modelled. If the distribution of the species is

known a priori to depend strongly on a particular predictor,

then specifying a short lengthscale will incorporate this knowl-

edge in the model, without a need to specify a particular func-

tional form for the relationship.

MEAN FUNCTION

In addition to these expected correlations, we provide the

GP model with a mean function: an initial ‘best guess’ at the

true function defining how the species’ probability of pres-

ence depends on the predictors. If nothing is known about

how the probability of presence of a species responds to an

environmental gradient, such as the temperature gradient in

our example, it is possible to instead use a flat mean func-

tion, which assumes an equal probability of presence

regardless of the values of predictors. If we have some prior

knowledge that the species is more likely to be present at

low temperatures than at high temperatures, we can incor-

porate this information into the model. For example, the

mean function could be a linear model relating temperature

to probability of presence.

Figure 3 demonstrates the effects of these two different

mean functions on our model, with varying lengthscales. We

can see from this illustration that where there are a sufficient

number of observations, the mean function has little effect on

the fitted line, but where there are few data points, such as

towards the limits of the recorded temperature range, themean

function determines the shape of the fitted response.
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Fig. 2. Illustration of the covariance function

using synthetic data: (a) observed presence/ab-

sence data (points) and the true underlying

probability of presence as a function of tem-

perature (dashed line); (b) correlation between

probability of presence at different sites, calcu-

lated from temperature difference between

these sites using the covariance function with

three different lengthscale parameters (dis-

cussed in the text).
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Fig. 3. Effects of the mean function and lengthscale on the fitted GP model. Shown are the observed data (points), the value of the mean function

(dotted line), the probability of presence predicted by theGPmodel (solid line) and associated 95% credible intervals for this prediction (shaded grey

area). Models are fitted with either the default flat mean function at the mean probability of presence (upper row) or a mean function representing

some prior knowledge about how probability of presence relates to temperature, as described in the text (lower row).
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Advantages ofGPSDMs

MODEL STRUCTURE

Machine learning algorithms such as BRTs (Elith, Leathwick

& Hastie 2008) have been shown to perform particularly well

at predicting species distributions, likely due to their ability to

fit complex responses to multiple environmental predictors

(Elith et al. 2006). A drawback of BRT and similar methods is

that they fit ‘jerky’ and biologically implausible predictive

responses, which may contribute to their tendency to overfit-

ting to training data (Wenger & Olden 2012). By comparison,

more traditional approaches such as univariate GAMs (Hastie

& Tibshirani 1986) fit more biologically realistic smooth func-

tions.Whilst some implementations of GAM can fit multivari-

ate smoothers that may represent such high-dimensional

interactions, the high number of degrees of freedom in these

models means they can only be fitted to very large data sets

(Wood 2011). GPs offer an attractive solution to this trade-off

between model flexibility and ecological realism by allowing

for complex interactions between predictors whilst fitting bio-

logically plausible smooth predictive surfaces (see Fig. 1).

INCORPORATING PRIOR ECOLOGICAL KNOWLEDGE

In many SDM analyses, the modeller has some prior knowl-

edge of the species’ ecology (such as a preference for some envi-

ronmental conditions) that it may be advantageous to

incorporate into the model. Bayesian statistical inference pro-

vides a convenient way of incorporating external information

of this sort into statistical ecological models via prior distribu-

tions (McCarthy 2007).

TheGP framework allows the user to incorporate ecological

knowledge into distribution models by manipulating two

Bayesian priors: the mean function and the lengthscale hyper-

prior. The mean function acts as a prior over the whole model

and can be used to incorporate specific knowledge of the spe-

cies’ response to environmental gradients. The lengthscale

hyperprior determines how likely different lengthscales are and

can be used to inform the model how rapidly probability of

presence is likely to change with different values of the environ-

mental predictors. In the absence of any prior information,

non-informative priors may be used.

UNCERTAINTY IN MODEL PREDICT IONS

As with any model, predictions from SDMs are uncertain esti-

mates of the probability of presence of the species.Where these

predictions are to be used for some practical purpose, it would

be beneficial to provide maps representing the uncertainty in

the predicted distribution map, allowing users to determine

how much confidence they can place in a given prediction

(Elith, Burgman & Regan 2002). For some SDM methods,

including generalized linear model (GLM) and GAM, esti-

mates of prediction uncertainty can be obtained analytically

and therefore with minimal computational cost. For some of

themoremodern (and best performing)methods, such as BRT

and MaxEnt, analytic uncertainty estimates are not available.

For these methods, uncertainty estimates can be produced by

bootstrapping data (Elith, Burgman & Regan 2002) though

this requires models to be run many (hundreds) of times and

can therefore be computationally prohibitive.GPmodels auto-

matically produce estimates of uncertainty in model predic-

tions, without the need for bootstrapping procedures, since

these are represented by the estimated posterior distribution of

the model. The second and third panels of Fig. 4 illustrate

mapped predictions and associated uncertainty estimates from

a GP distribution model of a bird species, the Mourning war-

bler (Geothlypis philadelphia), inNorthAmerica. The predicted

distribution map indicates the ‘best guess’ prediction of proba-

bility of presence – the posterior mode of the predictive

Fig. 4. Distribution data and predicted distribution of the Mourning

warbler Geothlypis philadelphia in North America. From top: distribu-

tion data from the Breeding Bird Survey 2011, training locations in col-

our (dark purple – presence, light purple – absence) and evaluation

locations in white; predicted probability of presence (posterior mode)

from aGP-fixedmodel fitted to the Bioclim predictor data set, as in the

model comparison; uncertainty in this prediction represented as the

marginal variance of the posterior distribution of the underlying func-

tion inferred by theGPmodel [i.e. the variance of z in eqn (4)].
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distribution for each pixel. The prediction uncertainty map

quantifies model uncertainty in these predictions measured as

the variance of the estimated function (z in eqn 4) for the set of

predictors given in each pixel.

Comparison ofGPswith existing SDMs

We compared the predictive ability of GPs fitted using

Laplace approximation, an efficient approximate inference

method, with commonly used approaches for modelling

species distributions from both presence/absence and pres-

ence-only data. All model fitting, predictions and statistical

analyses were performed in R version 3.0.0 (R Core Team,

2014). R code used to carry out these analyses and to plot all

figures in this manuscript is provided as an open-access code

repository at https://github.com/goldingn/gp_sdm_paper.

METHODS

Gaussian process SDM

We fitted the GP SDM given in eqn (4) using two different

approaches for determining the kernel lengthscales: estimating

the MAP values, and using a fixed values under based on the

values of predictors in the presence and absence training data.

Whilst the MAP estimate would be expected to provide a bet-

ter prediction, it requires repeated model fitting to determine

the optimal parameters and is therefore considerably more

computationally expensive. For theGPmodels withMAP esti-

mation of lengthscale hyperparameters (hereafter referred to

as GP-MAP), we used independent log-Gaussian priors on

each lengthscale withmean of log(10) and a standard deviation

of 1. As we scale predictors to have a standard deviation of one

during model fitting, this prior is insensitive to varying scales

of measurement. This prior restricts the optimization to eco-

logically plausible lengthscales by penalizing highly complex

GP surfaces and also forces the posterior density to be convex

(the likelihood surface alone is not guaranteed to be convex).

This prior and the range of lengthscales it suggests are illus-

trated in the supplementary material. We then estimate the

MAP values of the lengthscales by performing numerical opti-

mization using the limited-memory variant of the BFGS algo-

rithm (Byrd et al. 1995), implemented using R’s optim

function) and an analytic solution to the gradient of the mar-

ginal posterior density. TheMAP estimates for the lengthscales

are then used to fit the final GPmodel.

For GP models fitted using a fixed approximation to the

lengthscale hyperparameters (hereafter GP-fixed), we calculate

the lengthscale for each predictor as the ratio of the standard

deviation of the predictor at presence records to the standard

deviation at all records, multiplied by eight. This simple metric

gives an indication of the difference in predictor values between

presence and absence locations and therefore the likely utility

of the predictor. The decision of a scaling factor of eight was

arbitrarily chosen to reflect broadly realistic lengthscales (those

leading to few inflection points in random functions drawn

from the GP), prior to the model evaluation experiments

performed here. This metric could undoubtedly be improved,

but that is beyond the scope of this paper.

Data

Training and evaluation data sets of the distributions of North

American bird species were obtained from a subset of the

North American BBS in 2011 (Sauer et al. 2014) and a set of

eight minimally correlated Bioclim climatic variables (Hijmans

et al. 2005) as predictors. This data set was an exact replication

of that used in the Joint SDM comparison of Harris (2015).

Full details of this model evaluation data set are given in that

paper, and the R code used to construct it is provided byHarris

in a code repository at https://github.com/davharris/mistnet.

These occurrence data comprised the presence or absence of

370 bird species at each of 2768 survey routes, divided into

2467 training and 301 evaluation locations using a disc-based

spatial stratification procedure. This procedure was applied to

remove spatial autocorrelation between training and evalua-

tion data, which may inflate the validation statistics of SDMs

if not accounted for Wenger & Olden (2012). The locations of

these training and evaluation locations are shown in the first

panel of Fig. 4, with the training-set presences and absences of

G. philadelphia also indicated. The eight Bioclim variables

selected by Harris (2015) are detailed in Appendix A of the

supporting information for that paper.

Presence/absencemodels

For the presence/absence comparison, we comparedGP-MAP

and GP-fixed with BRT, GAM and GLMs. Each of these

models was fitted for each bird species using occurrence data at

the training routes and all eight environmental predictors.

Each model was then used to predict the species’ probability of

presence at each of the evaluation routes. The predictive accu-

racy of each model was quantified as the log-likelihood of the

withheld data from the predictions of each model, a measure

that assesses the calibration accuracy of the predicted probabil-

ity of presence (Lawson et al. 2014).

Presence-onlymodels

In order to assess predictive capacity in presence-only analyses,

we simulated presence-only data by subsetting the data set

used in the presence/absence comparison. We simulated

opportunistic presence records for each species by randomly

selecting 146 of the training routes reporting presence of the

given species. This number corresponds to the median number

of occurrence records in 108 published presence-only SDM

analyses reviewed by Yackulic et al. (2012) and is therefore

intended to be representative of standard presence-only SDM

practice. We omitted all species with fewer than 146 presence

records in the training set leaving a total of, coincidentally, 146

species for use in the presence-only comparison. The remaining

2321 training routes were used as background records, regard-

less of whether the species had been in fact been reported there.

As survey effort is broadly similar across all survey routes, this
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presence-only data set does not suffer from the observation

bias that typically affects presence-only SDM analyses, and

corresponds to the target-group approach to selecting back-

ground points suggested by Phillips et al. (2009).

Gaussian process-MAP and GP-fixed models were again

compared with BRT model, GAM and GLM as well as with

MaxEnt (Phillips, Anderson & Schapire 2006). TheGPmodel,

BRTmodel, GAM andGLMwere all fitted to these presence-

only data by naively considering the background data as true

absences. MaxEnt models were trained on the same data set,

treating these background records as background records.

Models trained on these presence-only data were used to

make predictions for the 301 evaluation routes, and these pre-

dictions were compared with the true presence/absence data

available at these locations. Since the prevalence of each spe-

cies in the study area is unidentifiable from presence-only data

(Ward et al. 2009; Phillips & Elith 2013), predictions from

both MaxEnt and presence/absence models applied to pres-

ence-only data are not estimates of the absolute probability of

presence of the species, but only an uncalibrated or relative

probability of presence (Elith et al. 2010). Since likelihood-

based and other calibration-sensitive metrics are not appropri-

ate for assessing relative probabilities such as these, we instead

calculated the Area Under the Receiver Operating Statistic

Curve statistic [AUC; calculated using the PROC R package –
version 1.6.0.1; Robin et al. (2011)] for each model’s predic-

tions for each species. Whilst use of AUC in applied SDM

studies has been criticized (Lobo, Jim�enez-Valverde & Real

2008), it provides a reliable measure of model discrimination

capacity when comparing a continuous estimate of relative

probability of presence against true presence/absence data

(Lawson et al. 2014).

Model fitting

Gaussian process-MAP andGP-fixed models were fitted using

the function graf in the GRaF R package version 0.1-14

(Golding 2013) setting the argumentopt.l toTRUE in the

former case andFALSE in the latter. BRTmodels were fitted

using the gbm R package version 2.1 (Ridgeway 2013) with

fivefold cross-validation, a tree complexity of 5, a learning rate

of 0�001 and a minimum of 1000 trees [in accordance with

Elith, Leathwick & Hastie (2008)]. The optimal number of

trees in the final BRT model was selected from the cross-vali-

dation folds using the gbm.perf function. GAMs were fitted

using the mgcv package version 1.8-3 (Wood 2011) with uni-

variate thin-plate regression spline smoothers for each predic-

tor using default estimation of the dimension of the smooth

terms and implementing covariate selection by penalization,

using the argument select = TRUE. GLMs were fitted

using the glm function in R with a binomial likelihood and

logistic link function (i.e. logistic regression) with linear terms

for each predictor. Covariate selection was carried out by

backward stepwise selection to minimize the Akaike Informa-

tion Criterion (Akaike 1973) of the final model. Whilst other

methods of covariate selection (such as penalization) may be

preferable to stepwise selection for GLMs, these are not as

widely used as stepwisemethods, and our aim here was to com-

pare the performance ofGPmodels with standard approaches.

MaxEnt models were fitted using dismo version 0.8-11 (Hij-

mans et al. 2012). Each model was fitted using all eight predic-

tors, and all other settings were held at their software defaults

for eachmodel.

Statistical analysis

Validation statistics for each species/model combination were

analysed by linear mixed-effects regression, implemented using

the nlme R package version 3.1-113 (Pinheiro et al. 2012). In

each regression, the response variable was the metric of predic-

tive performance (log-likelihood or AUC) and the predictors

were the SDMmodel type (modelled as a fixed effect) and spe-

cies (modelled as a random effect in order to account for the

nested study design). As the residual variances differed between

model types, a separate variance parameter was estimated for

each SDM model type. The residuals of this model were

assessed to ensure that the residuals were normally distributed

with homogeneous variances. The statistical significance of dif-

ferences between mean model validation statistics for each

model was assessed by t-tests on coefficients for the SDM

model type.

To allow users to assess overall goodness-of-fit of the pres-

ence/absence models, we also calculated the proportion of null

deviance explained by these models. For each species in the

presence/absence data set, the null model predicted the proba-

bility of presence at each test location to be equal to the species’

prevalence in the training set.

In the presence/absence comparison, 23 (1�26%) models

had markedly poor validation scores, with negative log-likeli-

hood scores more than three times higher than the negative

log-likelihood score of a prevalence-only null model. These

models comprised of 22 GAMs and 1 GLM fitted to species

for which training set prevalences were low (all 0�08 or lower).
Given that each of these models predicted unreasonably low

probabilities of presence in the test set (much lower than the

species’ training set prevalence), it seems likely that they would

have been rejected by an SDMmodeller in an applied analysis.

The validation scores for these 23 models represented clear

outliers in the evaluation data set and violated the normality

assumption of the mixed-effects model. We therefore removed

these 23 models and their validation scores from the presence/

absence results data set prior to statistical analysis (but

retained other models for these species). Exclusion of these

models resulted in improved mean prediction metrics for

GAMs and GLMs. However as the validation scores for these

model types in this comparison were markedly lower than

othermodels, the results of the comparison are still robust.

Marginal validation statistic scores were calculated from the

residuals of null models with an intercept term and random

effects terms for plant species, but no fixed effect of model type.

These marginal statistics enable us to visualize the expected

predictive capacity from each SDM whilst removing species-

level effects. Themarginal statistics indicate the expected differ-

ences in model performance, whilst integrating out the effects
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of species-specific ecology or of the species’ prevalence

(McPherson, Jetz &Rogers 2004).

Results

Averaging across all species, bothGPmodelsmademore accu-

rate predictions to the withheld, geographically stratified data

than all other models for both presence/absence and presence-

only comparisons (Fig. 5). Whilst GP-MAP models had

higher validation statistics than GP-fixed models in both the

presence/absence (log-likelihood 0�061 � 0�176 SE higher,

t1453 = 0�35, P < 0�7278) and presence-only (AUC

0�001 � 0�002 SE higher, t725 = 0�64, P < 0�5231) experi-

ments, these were not statistically significant, indicating that

the fixed lengthscales provided a good approximation to the

full model for this data set.

The expected log-likelihood for a GP-fixed model fitted to

presence/absence data for an average species was estimated to

be 3�8 (�0�348 SE, t1453 = 10�91, P < 0�0001) higher than for

BRT, 11�404 (�0�996 SE, t1453 = 11�45, P < 0�0001) higher

than for GAM and 10�704 (�0�741 SE, t1453 = 14�44,
P < 0�0001) higher than forGLMs.

The expected AUC score for a GP-fixed model fitted to

presence-only data for an average species was 0�885 (�0�007
SE). This was marginally (0�005 � 0�002 SE, t725 = 2�85,
P < 0�0045) higher than for BRT models; higher than for

MaxEnt (0�01 � 0�002 SE, t725 = 5�22, P < 0�0001) and

GAMs (0�013 � 0�003 SE, t725 = 4�36, P < 0�0001); and

markedly higher than for GLMs (0�034 � 0�004 SE,

t725 = 9�36, P < 0�0001).
In the presence/absence comparison, GP-MAP models

explained an average of 53�13% (�1�161%SE) and GP-fixed

models 53�11% (�1�146% SE) of null deviance in probability

of presence in the evaluation set, compared to 47�53 (�1�312%
SE) for BRT, 44�58 (�1�278% SE) for GLM and 44�34
(�1�481%SE) forGAM.

Generalized linear models took the least time to run (<0�1 s

on average per species for both presence-only and presence/ab-

sencemodels, inclusive of the stepwise selection procedure) fol-

lowed by MaxEnt (0�5 s), GP-fixed (2�1 and 2�3 s), GAM (1�6
and 4�6 s) and BRT (15�8 and 18�6 s), with GP-MAP models

taking the most time (149�6 and 168�4 s) – around 70 times

longer thanGP-fixed.

Discussion

In our comparison,GP SDMsoutperformed a number of pop-

ular SDM approaches, including BRT, which has been shown

to be one of the best performing of existing SDM approaches

(Elith, Leathwick & Hastie 2008). For this comparison, we

used an existing data set with predetermined training and vali-

dation sets and fitted eachmodel following best-practice guide-

lines where available and default settings otherwise. The large

number of species considered and the use of an evaluation data

set from a previous study by other researchers make this a fair,

albeit preliminary assessment of the performance of GP SDMs

vs. other modelling approaches. However, as each of these

models can be tweaked by an expert user to improve their per-

formance, our results are unlikely to be representative of the

best possible implementation of any of the models. A more

robust future assessment of these models could be obtained by

their implementation by different modellers on a range of dif-

ferent data sets, as in Elith, Leathwick & Hastie (2008). An

assessment of how the utility of GP SDMs and alternative

Fig. 5. Marginal validation statistics for model predictions to withheld training sets for presence/absence and presence-only data with two types of

cross-validation. Centre lines give the means of the marginal validation statistic and light grey boxes give �1 standard deviation of the marginal

statistics, as an indication of the likely differences in performance of eachmodel on an ‘average’ species in the plant data set. Dark grey boxes give�1

standard deviation of the estimated difference in themean of the statistic for eachmodel from themean statistic for theGP-fixedmodel (indicated by

the horizontal dashed line), as a visual representation of the statistical tests carried out. Higher log-likelihoods and higher AUCs indicate more accu-

rate predictions to the evaluation set.
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SDMs varies according to the spatial scale, sample size and

number and type of predictors would also be beneficial.

Our preliminary model comparison did not evaluate explic-

itly how well GPmodels deal with collinearity in predictors – a
common issue in SDM. Like BRT, but unlike GLMs,MaxEnt

or the additive GAMs, GP models can model high-dimen-

sional interactions between predictors and thus can explicitly

model a ridged surface reflecting the collinearity between any

two predictors. Furthermore, the squared-exponential covari-

ance function optimizes a lengthscale for each predictor by the

marginal likelihood, so that uninformative predictors are auto-

matically assigned large lengthscales (Rasmussen & Williams

2006). These features suggest that GP SDMs might perform

well when faced with collinearity, but this should be assessed

empirically in a future study.

The way in which Bayesian GP models incorporate prior

ecological knowledge, via a prior estimate of the modelled

function, and their rate of response to environmental gradi-

ents, seems particularly well suited to SDM applications. Such

an approach is likely to be useful in cases where few occurrence

records (Murray et al. 2009) are available but where the effects

of environmental drivers are well understood, such as tempera-

ture limits on pathogen distributions (Gething et al. 2011).

This method of incorporating prior knowledge could also be

used to integrate process-based ecological models (Dormann

et al. 2012) with the more commonly used correlative SDMs.

For example, a mechanistic model of how a species responds

to one or more key predictors (such as temperature) could be

fitted independently, then used as the mean function of a GP

model to learn a correlative relationship with a wider range of

predictors. The resulting model would retain the ability of the

mechanistic model to extrapolate to future environmental sce-

narios or new regions, whilst still accounting for predictors

whose impacts on the species’ distribution are harder to

describemechanistically.

Similarly to GLMs and GAMs, GP models produce esti-

mates of uncertainty in model predictions without the need for

bootstrapping procedures as is the case with BRT, MaxEnt

and other popular SDM approaches. Whilst predictions from

GPs fitted using the numerical approximation procedures

described here account for uncertainty in the shape of the

response curve, they do not account for uncertainty in the

lengthscale hyperparameters to be incorporated into this

uncertainty estimate. If required, predictions accounting for

uncertainty in hyperparameters can be approximated by

numerical integration (e.g. a deterministic algorithm as in Rue,

Martino & Chopin (2009) or by Monte Carlo). Such a proce-

dure will inevitably be more computationally intensive, but is

still likely to be far more efficient than alternative approaches

such asMCMC.

Gaussian process models fitted using Laplace approxima-

tion are reasonably computationally efficient, with the GP-

fixedmodels taking an equivalent time toGAMs, and less than

BRT models. GP-MAP models took much longer, although

run times of 2–3 min per species are likely to be acceptable for

many applications. A downside to GP models is that in the

naive case (using full-rank covariance matrices, as here), they

scale cubically with the size of the data set [due to multiple

matrix decompositions of Oðn3Þ complexity], so for very large

data sets, GP models can be disproportionately slow. For

example, on a single CPU of the computer used for model

comparisons, GP-fixed takes around 0�14 s to fit to a data set

with 1000 observations, for 10 000 observations that rises to

140 s, and for 100 000 (an implausibly large number for most

SDManalyses), it would take around 38 h. For users whowish

to fitGPmodels to large data sets efficiently, substantial speed-

ups can be achieved via parallel computing, by using linear

algebra routines optimized for multi-core machines. Far

greater increases in computational efficiency could be achieved

by implementing sparse GP models in addition to these

approximate inferencemethods (see e.g. Vanhatalo, Pietil€ainen

& Vehtari 2010). Whilst this would enable major improve-

ments in computational efficiency for large models, it would

also entail additional approximation error.

The GP model we evaluated is one of the simplest GP mod-

els possible. The wide array of different covariance functions,

likelihoods and inference methods that have been developed

within the machine learning community provide an array of

potential extensions and improvements to the GP model pre-

sented here. These include multi-output GP models which

could be used for joint SDM (Alvarez & Lawrence 2009; Pol-

lock et al. 2014), compositional covariance functions that

extract simple relationships from complex signals (Duvenaud

et al. 2013) and the tools to easily integrate SDMs with geo-

statistical and time-series models (Paciorek 2003; Diggle et al.

2013). Continuing evaluation and development of GP models

for SDM therefore has the potential to vastly improve our

capacity to predict and understand species distributions.
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