1,387 research outputs found

    Aerosynthesis: Growth of Vertically-aligned Carbon Nanofibres with Air DC Plasma

    Get PDF
    Vertically-aligned carbon nanofibres (VACNFs) have been synthesized in a mixture of acetone and air using catalytic DC plasma-enhanced chemical vapour deposition. Typically, ammonia or hydrogen is used as an etchant gas in the mixture to remove carbon that otherwise passivates the catalyst surface and impedes growth. Our demonstration of the use of air as the etchant gas opens up the possibility that ion etching could be sufficient to maintain the catalytic activity state during synthesis. It also demonstrates a path toward growing VACNFs in the open atmosphere

    Recent results from the canfranc dark matter search with germanium detectors

    Get PDF
    Two germanium detectors are currently operating in the Canfranc Underground Laboratory at 2450 m.w.e looking for WIMP dark matter. One is a 2 kg 76Ge IGEX detector (RG-2) which has an energy threshold of 4 keV and a low-energy background rate of about 0.3 c/keV/kg/day. The other is a small (234 g) natural abundance Ge detector (COSME), of low energy threshold (2.5 keV) and an energy resolution of 0.4 keV at 10 keV which is looking for WIMPs and for solar axions. The analysis of 73 kg-days of data taken by COSME in a search for solar axions via their photon Primakoff conversion and Bragg scattering in the Ge crystal yields a 95% C.L. limit for the axion-photon coupling g < 2.8 10^-9 GeV^-1. These data, analyzed for WIMP searches provide an exclusion plot for WIMP-nucleon spin-independent interaction which improves previous plots in the low mass region. On the other hand, the exclusion plot derived from the 60 kg-days of data from the RG-2 IGEX detector improves the exclusion limits derived from other ionization (non thermal) germanium detector experiments in the region of WIMP masses from 30 to 100 GeV recently singled out by the reported DAMA annual modulation effect.Comment: 6 pages, talk given at IDM2000, York, September 200

    Evolution, appearance, and occupational success

    Get PDF
    Visual characteristics, including facial appearance, are thought to play an important role in a variety of judgments and decisions that have real occupational outcomes in many settings. Indeed, there is growing evidence suggesting that appearance influences hiring decisions and even election results. For example, attractive individuals are more likely to be hired, taller men earn more, and the facial appearance of candidates has been linked to real election outcomes. In this article, we review evidence linking physical appearance to occupational success and evaluate the hypothesis that appearance based biases are consistent with predictions based on evolutionary theories of coalition formation and leadership choice. We discuss why appearance based effects are so pervasive, addressing ideas about a "kernel of truth" in attributions and about coalitional psychology. We additionally highlight that appearance may be differently related to success at work according to the types of job or task involved. For example, leaders may be chosen because the characteristics they possess are seen as best suited to lead in particular situations. During a time of war, a dominant-appearing leader may inspire confidence and intimidate enemies while during peace-time, when negotiation and diplomacy are needed, interpersonal skills may outweigh the value of a dominant leader. In line with these ideas, masculine-faced leaders are favored in war-time scenarios while feminine-faced leaders are favored in peace-time scenarios. We suggest that such environment or task specific competencies may be prevalent during selection processes, whereby individuals whose appearance best matches perceived task competences are most likely selected, and propose the general term "task-congruent selection" to describe these effects. Overall, our review highlights how potentially adaptive biases could influence choices in the work place. With respect to certain biases, understanding their origin and current prevalence is important in order to potentially reduce discrimination in the work place

    Improved Sensitivity SiC Hydrogen Sensor

    Get PDF

    Transgenic Mice Expressing Lipoprotein Lipase in Adipose Tissue: ABSENCE OF THE PROXIMAL 3′-UNTRANSLATED REGION CAUSES TRANSLATIONAL UPREGULATION

    Get PDF
    Lipoprotein lipase (LPL) is a key enzyme in lipoprotein and adipocyte metabolism. Defects in LPL can lead to hypertriglyceridemia and the subsequent development of atherosclerosis. The mechanisms of regulation of this enzyme are complex and may occur at multiple levels of gene expression. Because the 3′-untranslated region (UTR) is involved in LPL translational regulation, transgenic mice were generated with adipose tissue expression of an LPL construct either with or without the proximal 3′-UTR and driven by the aP2 promoter. Both transgenic mouse colonies were viable and expressed the transgene, resulting in a 2-fold increase in LPL activity in white adipose tissue. Neither mouse colony exhibited any obvious phenotype in terms of body weight, plasma lipids, glucose, and non-esterified fatty acid levels. In the mice expressing hLPL with an intact 3′-UTR, hLPL mRNA expression approximately paralleled hLPL activity. However in the mice without the proximal 3′-UTR, hLPL mRNA was low in the setting of large amounts of hLPL protein and LPL activity. In previous studies, the 3′-UTR of LPL was critical for the inhibitory effects of constitutively expressed hormones, such as thyroid hormone and catecholamines. Therefore, these data suggest that the absence of the 3′-UTR results in a translationally unrepressed LPL, resulting in a moderate overexpression of adipose LPL activity

    Remote Infrared Imaging of the Space Shuttle During Hypersonic Flight: HYTHIRM Mission Operations and Coordination

    Get PDF
    The Hypersonic Thermodynamic Infrared Measurements (HYTHIRM) project has been responsible for obtaining spatially resolved, scientifically calibrated in-flight thermal imagery of the Space Shuttle Orbiter during reentry. Starting with STS-119 in March of 2009 and continuing through to the majority of final flights of the Space Shuttle, the HYTHIRM team has to date deployed during seven Shuttle missions with a mix of airborne and ground based imaging platforms. Each deployment of the HYTHIRM team has resulted in obtaining imagery suitable for processing and comparison with computational models and wind tunnel data at Mach numbers ranging from over 18 to under Mach 5. This paper will discuss the detailed mission planning and coordination with the NASA Johnson Space Center Mission Control Center that the HYTHIRM team undergoes to prepare for and execute each mission

    Base Pairing between Hepatitis C Virus RNA and MicroRNA 122 3' of Its Seed Sequence Is Essential for Genome Stabilization and Production of Infectious Virus

    Get PDF
    MicroRNA 122 (miR-122) facilitates hepatitis C virus (HCV) replication by recruiting an RNA-induced silencing complex (RISC)-like complex containing argonaute 2 (Ago2) to the 5′ end of the HCV genome, thereby stabilizing the viral RNA. This requires base pairing between the miR-122 “seed sequence” (nucleotides [nt] 2 to 8) and two sequences near the 5′ end of the HCV RNA: S1 (nt 22 to 28) and S2 (nt 38 to 43). However, recent reports suggest that additional base pair interactions occur between HCV RNA and miR-122. We searched 606 sequences from a public database (genotypes 1 to 6) and identified two conserved, putatively single-stranded RNA segments, upstream of S1 (nt 2 and 3) and S2 (nt 30 to 34), with potential for base pairing to miR-122 (nt 15 and 16 and nt 13 to 16, respectively). Mutagenesis and genetic complementation experiments confirmed that HCV nt 2 and 3 pair with nt 15 and 16 of miR-122 bound to S1, while HCV nt 30 to 33 pair with nt 13 to 16 of miR-122 at S2. In genotype 1 and 6 HCV, nt 4 also base pairs with nt 14 of miR-122. These 3′ supplementary base pair interactions of miR-122 are functionally important and are required for Ago2 recruitment to HCV RNA by miR-122, miR-122-mediated stabilization of HCV RNA, and production of infectious virus. However, while complementary mutations at HCV nt 30 and 31 efficiently rescued the activity of a 15C,16C miR-122 mutant targeting S2, similar mutations at nt 2 and 3 failed to rescue Ago2 recruitment at S1. These data add to the current understanding of miR-122 interactions with HCV RNA but indicate that base pairing between miR-122 and the 5′ 43 nt of the HCV genome is more complex than suggested by existing models
    • …
    corecore