119 research outputs found

    Phylogenetic Analysis of the Formin Homology 2 Domain

    Get PDF
    Formin proteins are key regulators of eukaryotic actin filament assembly and elongation, and many species possess multiple formin isoforms. A nomenclature system based on fundamental features would be desirable, to aid the rapid identification and characterization of novel formins. In this article, we attempt to systematize the formin family by performing phylogenetic analyses of the formin homology 2 (FH2) domain, an independently folding region common to all formins, which alone can influence actin dynamics. Through database searches, we identify 101 FH2 domains from 26 eukaryotic species, including 15 in mice. Sequence alignments reveal a highly conserved yeast-specific insert in the “knob loop” region of the FH2 domain, with unknown functional consequences. Phylogenetic analysis using minimum evolution (ME), maximum parsimony (MP), and maximum likelihood (ML) algorithms strongly supports the existence of seven metazoan groups. Yeast FH2 domains segregate from all other eukaryotes, including metazoans, other fungi, plants, and protists. Sequence comparisons of non-FH2 regions support relationships between three metazoan groups (Dia, DAAM, and FRL) and examine previously identified coiled-coil and Diaphanous auto-regulatory domain sequences. This analysis allows for a formin nomenclature system based on sequence relationships, as well as suggesting strategies for the determination of biochemical and cellular activities of these proteins

    Connecting the Cytoskeleton to the Endoplasmic Reticulum and Golgi

    Get PDF
    A tendency in cell biology is to divide and conquer. For example, decades of painstaking work have led to an understanding of endoplasmic reticulum (ER) and Golgi structure, dynamics, and transport. In parallel, cytoskeletal researchers have revealed a fantastic diversity of structure and cellular function in both actin and microtubules. Increasingly, these areas overlap, necessitating an understanding of both organelle and cytoskeletal biology. This review addresses connections between the actin/microtubule cytoskeletons and organelles in animal cells, focusing on three key areas: ER structure and function; ER-to-Golgi transport; and Golgi structure and function. Making these connections has been challenging for several reasons: the small sizes and dynamic characteristics of some components; the fact that organelle-specific cytoskeletal elements can easily be obscured by more abundant cytoskeletal structures; and the difficulties in imaging membranes and cytoskeleton simultaneously, especially at the ultrastructural level. One major concept is that the cytoskeleton is frequently used to generate force for membrane movement, with two potential consequences: translocation of the organelle, or deformation of the organelle membrane. While initially discussing issues common to metazoan cells in general, we subsequently highlight specific features of neurons, since these highly polarized cells present unique challenges for organellar distribution and dynamics

    The Formin FMNL3 Assembles Plasma Membrane Protrusions that Participate in Cell–Cell Adhesion

    Get PDF
    FMNL3 is a vertebrate-specific formin protein previously shown to play a role in angiogenesis and cell migration. Here we define the cellular localization of endogenous FMNL3, the dynamics of GFP-tagged FMNL3 during cell migration, and the effects of FMNL3 suppression in mammalian culture cells. The majority of FMNL3 localizes in a punctate pattern, with \u3e95% of these puncta being indistinguishable from the plasma membrane by fluorescence microscopy. A small number of dynamic cytoplasmic FMNL3 patches also exist, which enrich near cell–cell contact sites and fuse with the plasma membrane at these sites. These cytoplasmic puncta appear to be part of larger membranes of endocytic origin. On the plasma membrane, FMNL3 enriches particularly in filopodia and membrane ruffles and at nascent cell–cell adhesions. FMNL3-containing filopodia occur both at the cell–substratum interface and at cell–cell contacts, with the latter being 10-fold more stable. FMNL3 suppression by siRNA has two major effects: decrease in filopodia and compromised cell–cell adhesion in cells migrating as a sheet. Overall our results suggest that FMNL3 functions in assembly of actin-based protrusions that are specialized for cell–cell adhesion

    Cell Type–Dependent Mechanisms for Formin-Mediated Assembly of Filopodia

    Get PDF
    Filopodia are finger-like protrusions from the plasma membrane and are of fundamental importance to cellular physiology, but the mechanisms governing their assembly are still in question. One model, called convergent elongation, proposes that filopodia arise from Arp2/3 complex-nucleated dendritic actin networks, with factors such as formins elongating these filaments into filopodia. We test this model using constitutively active constructs of two formins, FMNL3 and mDia2. Surprisingly, filopodial assembly requirements differ between suspension and adherent cells. In suspension cells, Arp2/3 complex is required for filopodial assembly through either formin. In contrast, a subset of filopodia remains after Arp2/3 complex inhibition in adherent cells. In adherent cells only, mDia1 and VASP also contribute to filopodial assembly, and filopodia are disproportionately associated with focal adhesions. We propose an extension of the existing models for filopodial assembly in which any cluster of actin filament barbed ends in proximity to the plasma membrane, either Arp2/3 complex dependent or independent, can initiate filopodial assembly by specific formins

    Novel Roles for Actin in Mitochondrial Fission

    Get PDF
    Mitochondrial dynamics, including fusion, fission and translocation, are crucial to cellular homeostasis, with roles in cellular polarity, stress response and apoptosis. Mitochondrial fission has received particular attention, owing to links with several neurodegenerative diseases. A central player in fission is the cytoplasmic dynamin-related GTPase Drp1, which oligomerizes at the fission site and hydrolyzes GTP to drive membrane ingression. Drp1 recruitment to the outer mitochondrial membrane (OMM) is a key regulatory event, which appears to require a pre-constriction step in which the endoplasmic reticulum (ER) and mitochondrion interact extensively, a process termed ERMD (ER-associated mitochondrial division). It is unclear how ER-mitochondrial contact generates the force required for pre-constriction or why pre-constriction leads to Drp1 recruitment. Recent results, however, show that ERMD might be an actin-based process in mammals that requires the ER-associated formin INF2 upstream of Drp1, and that myosin II and other actin-binding proteins might be involved. In this Commentary, we present a mechanistic model for mitochondrial fission in which actin and myosin contribute in two ways; firstly, by supplying the force for pre-constriction and secondly, by serving as a coincidence detector for Drp1 binding. In addition, we discuss the possibility that multiple fission mechanisms exist in mammals

    The Formin FMNL3 is a Cytoskeletal Regulator of Angiogenesis

    Get PDF
    The process of angiogenesis requires endothelial cells (ECs) to undergo profound changes in shape and polarity. Although this must involve remodelling of the EC cytoskeleton, little is known about this process or the proteins that control it. We used a co-culture assay of angiogenesis to examine the cytoskeleton of ECs actively undergoing angiogenic morphogenesis. We found that elongation of ECs during angiogenesis is accompanied by stabilisation of microtubules and their alignment into parallel arrays directed at the growing tip. In other systems, similar microtubule alignments are mediated by the formin family of cytoskeletal regulators. We screened a library of human formins and indentified formin-like 3 (FMNL3; also known as FRL2) as a crucial regulator of EC elongation during angiogenesis. We showed that activated FMNL3 triggers microtubule alignment and that FMNL3 is required for this alignment during angiogenic morphogenesis. FMNL3 was highly expressed in the ECs of zebrafish during development and embryos that were depleted for FMNL3 showed profound defects in developmental angiogenesis that were rescued by expression of the human gene. We conclude that FMNL3 is a new regulator of endothelial microtubules during angiogenesis and is required for the conversion of quiescent ECs into their elongated angiogenic forms

    Actin Filaments Target the Oligomeric Maturation of the Dynamin Gtpase Drp1 to Mitochondrial Fission Sites

    Get PDF
    While the dynamin GTPase Drp1 plays a critical role during mitochondrial fission, mechanisms controlling its recruitment to fission sites are unclear. A current assumption is that cytosolic Drp1 is recruited directly to fission sites immediately prior to fission. Using live-cell microscopy, we find evidence for a different model, progressive maturation of Drp1 oligomers on mitochondria through incorporation of smaller mitochondrially-bound Drp1 units. Maturation of a stable Drp1 oligomer does not forcibly lead to fission. Drp1 oligomers also translocate directionally along mitochondria. Ionomycin, a calcium ionophore, causes rapid mitochondrial accumulation of actin filaments followed by Drp1 accumulation at the fission site, and increases fission rate. Inhibiting actin polymerization, myosin IIA, or the formin INF2 reduces both un-stimulated and ionomycin-induced Drp1 accumulation and mitochondrial fission. Actin filaments bind purified Drp1 and increase GTPase activity in a manner that is synergistic with the mitochondrial protein Mff, suggesting a role for direct Drp1/actin interaction. We propose that Drp1 is in dynamic equilibrium on mitochondria in a fission-independent manner, and that fission factors such as actin filaments target productive oligomerization to fission sites

    Regulation of INF2-mediated actin polymerization through site-specific lysine acetylation of actin itself

    Get PDF
    INF2 is a formin protein that accelerates actin polymerization. A common mechanism for formin regulation is autoinhibition, through interaction between the N-terminal diaphanous inhibitory domain (DID) and C-terminal diaphanous autoregulatory domain (DAD). We recently showed that INF2 uses a variant of this mechanism that we term "facilitated autoinhibition," whereby a complex consisting of cyclase-associated protein (CAP) bound to lysine-acetylated actin (KAc-actin) is required for INF2 inhibition, in a manner requiring INF2-DID. Deacetylation of actin in the CAP/KAc-actin complex activates INF2. Here we use lysine-to-glutamine mutations as acetylmimetics to map the relevant lysines on actin for INF2 regulation, focusing on K50, K61, and K328. Biochemically, K50Q- and K61Q-actin, when bound to CAP2, inhibit full-length INF2 but not INF2 lacking DID. When not bound to CAP, these mutant actins polymerize similarly to WT-actin in the presence or absence of INF2, suggesting that the effect of the mutation is directly on INF2 regulation. In U2OS cells, K50Q- and K61Q-actin inhibit INF2-mediated actin polymerization when expressed at low levels. Direct-binding studies show that the CAP WH2 domain binds INF2-DID with submicromolar affinity but has weak affinity for actin monomers, while INF2-DAD binds CAP/K50Q-actin 5-fold better than CAP/WT-actin. Actin in complex with full-length CAP2 is predominately ATP-bound. These interactions suggest an inhibition model whereby CAP/KAc-actin serves as a bridge between INF2 DID and DAD. In U2OS cells, INF2 is 90-fold and 5-fold less abundant than CAP1 and CAP2, respectively, suggesting that there is sufficient CAP for full INF2 inhibition.Peer reviewe
    • …
    corecore