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Summary
The process of angiogenesis requires endothelial cells (ECs) to undergo profound changes in shape and polarity. Although this must
involve remodelling of the EC cytoskeleton, little is known about this process or the proteins that control it. We used a co-culture assay

of angiogenesis to examine the cytoskeleton of ECs actively undergoing angiogenic morphogenesis. We found that elongation of ECs
during angiogenesis is accompanied by stabilisation of microtubules and their alignment into parallel arrays directed at the growing tip.
In other systems, similar microtubule alignments are mediated by the formin family of cytoskeletal regulators. We screened a library of
human formins and indentified formin-like 3 (FMNL3; also known as FRL2) as a crucial regulator of EC elongation during

angiogenesis. We showed that activated FMNL3 triggers microtubule alignment and that FMNL3 is required for this alignment during
angiogenic morphogenesis. FMNL3 was highly expressed in the ECs of zebrafish during development and embryos that were depleted
for FMNL3 showed profound defects in developmental angiogenesis that were rescued by expression of the human gene. We conclude

that FMNL3 is a new regulator of endothelial microtubules during angiogenesis and is required for the conversion of quiescent ECs into
their elongated angiogenic forms.
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Introduction
Endothelial cells (ECs) in quiescent vasculature form a tightly

connected sheet of extremely flattened cells. They are unusual in

exhibiting two concurrent polarities: apical-basolateral polarity

and planar cell polarity. The apical surface of the EC is always

oriented towards the lumen of the vessel, whereas the axis of

planar cell polarity is aligned with the direction of blood flow

(Rogers et al., 1986). During angiogenesis, ECs undergo extreme

changes in morphology and polarity. Cells convert to an invasive

form and burrow through the basement membrane surrounding

the vessel to form an angiogenic sprout. As the new vessel forms,

ECs migrate outwards as a collective chord of highly elongated

cells (Carmeliet, 2000). Although much is known about the

control of shape and polarity in ECs in stable vessels, little is

known about the mechanisms controlling the morphological

changes that underpin the angiogenic process.

In other biological systems that involve cell elongation, the

cytoskeleton plays the major part in controlling morphogenesis

and polarity. Cell elongation in neurons during axonal outgrowth

is accompanied by reorganisation of the microtubule

cytoskeleton to form parallel tracks that align with the long

axis of the axon shaft (Dent and Gertler, 2003). Similar

reorganisations of microtubules accompany cell elongation in

diverse biological systems, from the elongation of myotubes

during skeletal muscle formation (Gundersen et al., 1989;

Bugnard et al., 2005) through to the extension of the hyphal tip

in fungi (Steinberg et al., 2001). In these situations, realignment

of the microtubules defines the polarity of the elongating cell and

directs the transport of material to the growing tip.

Recent studies have defined roles for members of the formin

family in the regulation of cell elongation (Bartolini and

Gundersen, 2010). Formins are regulators of both the actin and

microtubule cytoskeletons. The family is defined by a conserved

formin homology 2 (FH2) domain, which catalyses the

nucleation of actin filaments (Pruyne et al., 2002; Sagot et al.,

2002). The FH2 domain also binds to the growing (‘barbed’) end

of the actin filament, preventing it from being capped and so

promoting filament elongation (Zigmond et al., 2003; Harris

et al., 2004). The actin filaments formed by formins are

characteristically long and unbranched, and form the structural

building blocks for actin stress fibres (Young et al., 2008). The

actin filaments made by formins are also used to construct

filopodia, which are sensory projections that enable migrating

cells to sense their external environment (Mellor, 2010). In

addition to regulating the actin cytoskeleton, certain formins have

been shown to control microtubule alignment and stability.

In migrating fibroblasts, a subset of microtubules becomes

selectively stabilised and aligned towards the protrusive leading

edge (Gundersen and Bulinski, 1988). This realignment of the

microtubules is required for polarised migration. Initial studies

showed that the formin mDia2 is localised to stable microtubules

in these cells and that microtubule stabilisation is induced by its
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activation (Palazzo et al., 2001). Subsequent studies showed that

the formins mDia1, mDia3 and inverted formin 1 (INF1) are also
able to interact with microtubules and promote stabilisation
(Bartolini and Gundersen, 2010). In addition to promoting

microtubule stabilisation, some formins mediate the alignment
of microtubules into parallel arrays. In budding yeast, the formins
bud neck involved 1 (Bni1) and Bni1 related (Bnr1) produce
actin cables that orientate microtubules towards the bud for

polarised growth (Pruyne et al., 2004). In migrating fibroblasts,
activation of mDia2 promotes the formation of a parallel array of
stable microtubules that are aligned towards the protrusive front

of the cell (Palazzo et al., 2001). mDia1 can also trigger the
formation of parallel arrays of microtubules, and mutations in
mDia1 that block this alignment of microtubules also block cell

elongation, suggesting that the two processes are inherently
linked (Ishizaki et al., 2001). In keeping with this, mDia1 is
required for axonal elongation (Arakawa et al., 2003). Similar

effects are seen in HeLa cells expressing the formins INF1
(Young et al., 2008) or formin homology 2 domain containing 1
(FHOD1) (Gasteier et al., 2005). In each case, the formin can
trigger the formation of parallel arrays of microtubules in a subset

of cell types and this is associated with cell elongation. The
mechanisms involved in microtubule alignment by formins are
still unclear. In several cases, microtubules are aligned along the

actin filaments that are produced by the formins, although
it is not clear whether direct interactions occur between the
microtubules and actin (Bartolini and Gundersen, 2010). Some

formins can interact with the tips of elongating microtubules,
suggesting that selective capture at the plasma membrane also
contributes to microtubule realignment (Wen et al., 2004).

The role of the microtubule cytoskeleton in mediating cell

elongation in diverse systems prompted us to investigate
microtubule function in angiogenesis. Here, we show that EC
elongation during angiogenesis is accompanied by profound

changes in the microtubule cytoskeleton. Microtubules become
stabilised and aligned into a parallel cytoskeletal array directed at
the growing tip. Through screening the human formin family, we

show that the formin-like 3 (FMNL3; also known as FRL2) is
required for microtubule reorganisation during angiogenesis and
for efficient EC elongation. In keeping with this, depletion of
FMNL3 in zebrafish embryos leads to profound defects in

developmental angiogenesis.

Results
EC microtubules undergo realignment and stabilisation
during angiogenesis

ECs participating in angiogenesis must undergo profound shape
changes, converting from the highly flattened morphology of ECs
in quiescent vasculature to an elongated, invasive form.

Currently, little is known about how this morphological
conversion is achieved. To investigate this, we used a well-
established three-dimensional (3D) co-culture assay of

angiogenesis to examine the architecture of the microtubule
cytoskeleton as ECs underwent the morphological conversions of
angiogenesis. In this assay, ECs are co-cultured with primary

dermal fibroblasts. The fibroblasts secrete a complex 3D
extracellular matrix (ECM), rich in collagen I, through which
the ECs grow. The mature culture is three to five cells deep, with

the ECs embedded in the ECM (Sorrell et al., 2007;
supplementary material Fig. S1). Importantly, ECs in this assay
recapitulate the key morphological changes of angiogenesis, with

the ECs migrating collectively to form a branching network of
chords that undergo anastomosis. As the vessels mature, they

form a patent lumen and secrete a basement lamina, rich in
laminin and collagen IV (Bishop et al., 1999; Donovan et al.,
2001; Sorrell et al., 2007).

We compared the microtubule cytoskeleton of ECs undergoing

angiogenic morphogenesis in the co-culture with that of ECs
grown in monoculture. ECs grown as a quiescent monolayer
displayed a radial array of microtubules focussed on a

microtubule-organising centre (MTOC) located next to the
nucleus (Fig. 1A). A similar distribution of microtubules has
been reported in ECs in stable vasculature in vivo (McCue et al.,

2006). Detyrosinated tubulin accumulates in microtubules over
time and so acts as a marker of microtubule stability (Schulze
et al., 1987). The microtubules in quiescent ECs were highly
dynamic, as judged by the very low levels of staining for

detyrosinated tubulin (glu-tubulin; Fig. 1A). In marked contrast,
ECs undergoing angiogenesis stained intensely for stable
microtubules (Fig. 1B). High-resolution imaging of the stable

microtubules showed that they were aligned in parallel along the
long axis of the elongating EC (Fig. 1C). In agreement with their
heavy staining for glu-tubulin, these microtubules did not label

for end-binding 1 (EB1), a protein that associates with the tips
of actively growing microtubules (Vaughan, 2005) (Fig. 1C).
Similar parallel alignments of stable microtubules are found in

elongating neurons (Witte et al., 2008). Intriguingly, similar to
neurons, the stable microtubules in angiogenic ECs terminated
before the growing tip, and often looped backwards in this region
(Fig. 1C). The upregulation of stable microtubules was not

simply a general feature of cells in 3D culture, as the surrounding
fibroblasts had only a few stable microtubules, which were
restricted to the primary cilia (Fig. 1C).

Screening of the formin family identifies FMNL3 as a
regulator of angiogenic morphogenesis

Stabilisation and alignment of microtubules is important for the
polarisation of migrating cells (Gundersen and Bulinski, 1988)
and also for the elongation of neurons and myotubules
(Gundersen et al., 1989; Witte et al., 2008). In these cell types,

the realignment of the microtubule cytoskeleton is coordinated by
formins (Bartolini and Gundersen, 2010). The stabilisation and
alignment of microtubules that we observed in ECs undergoing

angiogenic morphogenesis suggested that formins have a role in
angiogenesis. To examine this, we used the co-culture assay to
screen a library of small interfering RNA (siRNA) targeting the

human formins. We used a modification of the assay described by
Mavria and colleagues in which ECs are transfected with siRNA
before being added to the assay, which ensures that gene
silencing is restricted to the ECs (Mavria et al., 2006).

Representative images for each formin screened are shown in
(Fig. 2). We quantified vessel formation in terms of the total
length of vessels per unit area (Fig. 3A). In neurons (Arakawa

et al., 2003) and migrating fibroblasts (Palazzo et al., 2001; Wen
et al., 2004; Bartolini et al., 2008), the alignment and stabilisation
of microtubules is regulated by two closely related formins;

mDia1 and mDia2. Surprisingly, neither mDia1 nor mDia2 were
required for the formation of vessels in the assay (Fig. 3A). We
confirmed the efficiency of silencing of these two formins, and of

the related mDia3 protein, by western blotting (supplementary
material Fig. S2). Although most other formins also showed no
significant effect, silencing of FMNL3 and dishevelled associated
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activator of morphogenesis 2 (DAAM2) severely inhibited vessel

formation (Fig. 3A). We also observed a smaller but statistically

significant effect of silencing FHOD1 (P,0.05) (Fig. 3A).

FMNL3 and DAAM2 are uncharacterised members of the

formin family and little is known of their biological function.

We focussed on FMNL3 (also known as FRL2) (Harris et al.,

2004) because it gave the strongest phenotype. FMNL3 was

easily detected in ECs and we were able to silence expression by

.90% with each of two independent siRNAs (Fig. 3B).

Depletion of FMNL3 had no effect on the growth, viability or

morphology of ECs grown in monoculture (data not shown);

however, depletion of FMNL3 with either siRNA led to strong

inhibition of vessel formation in the co-culture assay (Fig. 3E).

Quantification of the assay also revealed a significant reduction

in branch formation with depletion of FMNL3; however, this

effect was smaller than the overall effect on vessel length

(Fig. 3E). Interestingly, examination of the co-cultures showed

that ECs were able to proliferate in the assay, but were unable to

undergo conversion to an angiogenic morphology and grew

instead mainly as islands of cells (Fig. 3C). Higher resolution

confocal imaging showed some stunted EC tubes growing from

the islands of ECs (Fig. 3C).

One possible explanation for the defect in EC elongation in the

co-culture assay was that depletion of FMNL3 disrupted some

physical interaction between the ECs and fibroblasts. To examine

this, we performed a second in vitro angiogenesis assay in which

ECs are cultured between two layers of collagen I gel in the

presence of vascular endothelial growth factor (VEGF). In this

assay, the ECs form a network of vessels with a rudimentary

lumen over a period of 24–48 hours (Matsumoto et al., 2002;

Bohman et al., 2005). As with the co-culture assay, silencing of

FMNL3 strongly inhibited vessel formation. ECs depleted of

FMNL3 showed a general lack of extension and were rounded in

Fig. 1. The microtubule cytoskeleton is reorganised and stabilised during angiogenesis. (A) ECs were grown in monoculture and stained for PECAM-1

(green) and either total microtubules (top panel; red) or for detyrosinated, stable microtubules (bottom panel; glu-tubulin, red). Cell nuclei were stained with 49,6-

diamidino-2-phenylindole (DAPI) (blue). ECs in monoculture displayed a radial array of microtubules with little or no stable microtubule staining. (B) ECs were

grown in an organotypic co-culture to stimulate angiogenic morphogenesis and stained identically and in parallel to the cells in (A). The cells were imaged in

parallel and under the same settings. ECs undergoing angiogenic morphogenesis showed strong staining for stable microtubules. The surrounding fibroblasts

contained dense microtubules (top panels) but few stable microtubules. (C) High-magnification image of the tip of an EC tube in the organotypic assay. Stable

microtubules (green) were aligned along the long axis of the body of the tube. At the growing tip, they looped backwards (arrow). Cells were also stained for EB1

(red), which marks the tips of dynamic microtubules. EB1 staining was not detected at the tips of the stable microtubules, but was apparent at the leading edge of

the EC tube. The cilia of the surrounding fibroblasts can be seen clearly (asterisks). Scale bars: 10 mm. MT, microtubule.

Fig. 2. Screening for formin function in angiogenesis. ECs were treated

with siRNA SmartPools for the human formins and then transferred to the co-

culture angiogenesis assay. Control cells were treated with siRNA to a control

gene encoding lamin. ECs were fixed and stained for PECAM-1 after 6 days.

Representative images for each formin are shown. Scale bar: 500 mm.
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morphology (Fig. 3D). We conclude that the requirement for

FMNL3 for EC elongation in angiogenesis does not depend on

the presence of fibroblasts.

FMNL3 is highly expressed in zebrafish vasculature and is

required for efficient developmental angiogenesis

To examine the role of FMNL3 in angiogenesis in a

physiological context, we used the well-established zebrafish

model of vascular development (Ellertsdottir et al., 2010). The

first vessels to appear in the zebrafish embryo are the dorsal

aorta and the posterior cardinal vein, which form by

vasculogenesis. This process is morphologically distinct from

angiogenesis, and involves angioblasts migrating to the midline

and then coalescing. As in other vertebrates, this primitive

vasculature is elaborated on by sprouting angiogenesis. At

,24 hours post-fertilisation (24 hpf), the intersomitic vessels

(ISV) begin to sprout from the dorsal artery, followed closely by

sprouting from the posterior cardinal vein. The ISV elongate

outwards to the dorsal side of the embryo, where they establish

connections with neighbouring ISV to form the dorsal

longitudinal anastomosing vessel (DLAV), which closes the

circulatory loop (Ellertsdottir et al., 2010). The rapid

development of the vasculature in zebrafish and the ease of

imaging the whole animal have made it a valuable system for

studying both vasculogenesis and angiogenesis.

Database analysis revealed that zebrafish have a single

orthologue of FMNL3, which shows a high degree of

conservation to the human protein (72% identity). Nothing is

known of the tissue distribution of FMNL3 in adult zebrafish or

its expression pattern during development. We examined FMNL3

expression in zebrafish embryos by in situ hybridisation at 24

hpf, when the major vessels are present and the ISV are actively

forming. Interestingly, expression of FMNL3 mRNA was almost

entirely restricted to the ECs of the developing vasculature in

these embryos. High expression was seen in the major head and

trunk vessels, and also in the ISV (Fig. 4). We conclude that

FMNL3 is an endothelial formin.

To examine the requirement for FMNL3 during developmental

angiogenesis, we used the fli:gfp zebrafish line, which expresses

GFP in ECs under the Fli promoter, enabling visualisation of the

vasculature through development (Lawson and Weinstein, 2002).

We silenced FMNL3 expression by injection of a specific

morpholino oligonucleotide and visualised the developing

vasculature by fluorescence imaging of the whole embryo. The

Fig. 3. FMNL3 is required for angiogenic morphogenesis. (A) ECs

were treated with siRNA SmartPools for the human formins and then

transferred to the co-culture angiogenesis assay. Control cells were treated

with siRNA to a control gene encoding lamin. ECs were fixed and stained

after 6 days and the density of endothelial tubes was measured (i.e. total

length of tubes per unit area). Data show the mean 6 s.e.m. of three

independent experiments, except for lamin, where n56. The effects of

formin silencing were analysed using the Student’s t-test (unpaired, two-

tailed). Silencing of FMNL3 and DAAM2 both led to significant

inhibition of vessel formation (P,0.001). Silencing of FHOD1 gave a

smaller but still significant inhibition (P,0.05). (B) Silencing of FMNL3

in ECs using two independent single siRNAs. Each siRNA gave .90%

silencing of FMNL3 expression by western blotting, compared with

untransfected controls, or ECs transfected with a siRNA to a control gene

(encoding lamin). The requirement of FMNL3 for angiogenic

morphogenesis was confirmed by using these two independent FMNL3

siRNAs. (C) Representative images of the co-cultures stained for

PECAM-1. Silencing of FMNL3 inhibited the formation of EC tubes and

led the cells to grow as islands. Scale bar: 1 mm. (D) Confocal imaging of

the co-culture assay stained for PECAM-1 at higher magnification. ECs

treated with FMNL3 siRNA produced only short tubes that emerged from

islands of cells with strong cell–cell junctions. Scale bar: 10 mm.

(E) Phase contrast images of in vitro angiogenesis assays in 3D collagen

gels. At 48 h, the control ECs had formed a network of tubes, whereas

ECs treated with FMNL3 siRNA had failed to extend. (F) Quantification

of the co-culture assays with FMNL3 siRNA treatment. ECs were treated

without siRNA (control), with lamin siRNA or with the two separate

FMNL3 siRNAs. Graphs show the mean 6 s.e.m. of three independent

experiments. Data were analysed using the Student’s t-test (paired, two-

tailed). Treatment with either FMNL3 siRNA led to strong inhibition of

vessel formation. FMNL3 silencing also led to an inhibition of vessel

branching. ***P,0.001; **P,0.01; *P,0.05. Cont., control; La, lamin.
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control morphant embryos showed normal vascular development,

whereas FMNL3 morphant embryos showed no obvious defect in

the formation of the major trunk vessels; however, depletion of

FMNL3 led to a profound defect in angiogenesis in .80% of

these embryos (Fig. 5A,B,C). Although sprouting of the ISV

occurred, the ECs failed to extend fully across the intersomic

region and there was no apparent formation of the DLAV

(Fig. 5A,B). No other obvious defect was observed in the

development of the embryos. To test the specificity of the

FMNL3 morpholino oligonucleotide, we attempted a rescue by

co-injection into the embryos of the human FMNL3 mRNA.

Despite the species distance, human FMNL3 was able to mediate

a significant rescue of the developmental angiogenesis defect

(Fig. 5A,D). We conclude that FMNL3 is an EC-localised formin

that is required for developmental angiogenesis.

FMNL3 is required for microtubule alignment during
angiogenesis

The role of formins in microtubule alignment and stabilisation in

other systems prompted us to examine the role of FMNL3

in microtubule reorganisation during angiogenesis. We first

examined whether overexpression of FMNL3 in ECs grown

in monoculture would be sufficient to trigger microtubule
reorganisation and cell elongation. FMNL3 showed a plasma

membrane localisation in ECs, with an unusual concentration

specifically at the adhesive edge of the cell (Fig. 6A,B). The

related formin FMNL1 has been shown to have an N-terminal

myristoylation site that targets it to the plasma membrane (Han

et al., 2009). Examination of the FMNL3 sequence revealed that

FMNL3 also has a consensus site for N-terminal myristoylation,

providing a potential explanation for its membrane localisation.
In keeping with this, mutation of the myristoylation site

led to loss of plasma membrane association (data not shown).

Overexpression of full-length FMNL3 had no apparent effect on

the radial distribution of microtubules in ECs grown as

monolayers (Fig. 6A); neither did it affect the low level of

stable microtubule staining, which was concentrated almost

entirely in the centrosomes (Fig. 6B). Overexpression of full-
length FMNL3 did have a profound effect on the actin

cytoskeleton. ECs expressing exogenous FMNL3 lost their

actin stress fibres and the cell body was filled with a fine skein

of actin filaments (Fig. 6C). Similar rearrangements of the actin

cytoskeleton are seen in cells expressing mDia1 (Watanabe et al.,

1999). Unlike the actin filaments produced by mDia1 (Ishizaki

et al., 2001) or FHOD1 (Gasteier et al., 2005), there was no
apparent alignment of microtubules with the actin filaments

produced by FMNL3 (data not shown).

Formins are regulated by an autoinhibitory interaction between

the N terminus and the C terminus (Goode and Eck, 2007).
Previous studies of the role of mDia1 in microtubule stabilisation

Fig. 4. FMNL3 is highly expressed in the developing zebrafish

vasculature. Zebrafish embryos were fixed at 24 hpf and FMNL3 expression

was localised by in situ hybridisation with an FMNL3 mRNA probe. FMNL3

expression was generally restricted to the vasculature. No staining was seen

with the corresponding negative (sense) probe (data not shown).

Fig. 5. FMNL3 is required for developmental

angiogenesis. (A) fli:GFP zebrafish embryos were

injected with FMNL3 morpholino oligos (MO) to silence

expression. Control embryos were injected with a control

MO. The formation of ISV (arrows) by angiogenesis was

assessed at 30 h. Panels show inverted grey-scale images

of the GFP fluorescence. Silencing of FMNL3 strongly

inhibited ISV formation, resulting in short and

disorganised sprouts. The DLAV (arrowhead) did not

form. Co-injection of human FMNL3 mRNA with the

zebrafish FMNL3 MO rescued the phenotype (bottom

panel). (B) Magnified section of the embryo trunk.

(C,D) Quantification of the effects of FMNL3 depletion

on formation of the ISV. In each case, ISV formation was

scored in three independent experiments. A minimum of

30 embryos were scored for each condition in each

experiment. Data are means 6 s.e.m. Statistical

significance was analysed using Student’s t-test

(unpaired, two-tailed). (C) Silencing of FMNL3 led to a

defect in ISV formation in .80% of embryos (P,0.01).

(D) Co-injection of human (h) FMNL3 mRNA with the

zebrafish FMNL3 MO led to significant rescue of ISV

formation (P,0.01). Cont., control.
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and alignment used a constitutively active truncation mutant

comprising the central FH1 and FH2 domains of mDia1. This

active mutant triggered both microtubule stabilisation and

alignment in cells (Ishizaki et al., 2001). We made the

equivalent mutant of FMNL3 and expressed it in ECs in

monoculture. Expression of activated FMNL3 had no effect on

microtubule stabilisation (data not shown); however, it triggered

the reorganisation of the radial EC microtubules into parallel

arrays. Interestingly, the tips of these aligned microtubules

contacted patches of bright FMNL3 staining at the plasma

membrane (Fig. 7A). Some formins are able to bind to the tip of

elongating microtubules, suggesting that selective capture at the

plasma membrane contributes to microtubule alignment (Wen

et al., 2004). We used total internal reflection (TIRF) microscopy

of GFP–FMNL3 and mCherry–tubulin to examine the spatial

relationships of full-length FMNL3 and microtubules in live ECs.

Imaging by TIRF showed the plasma membrane localisation of

FMNL3 clearly and revealed the presence of discrete patches of

concentrated FMNL3 at the adhesive rim of the cell (Fig. 7).

These patches of plasma membrane FMNL3 were frequently

contacted by microtubules tips (Fig. 7; supplementary material

Movie S1).

As expression of activated FMNL3 led to the reorganisation of

microtubules in quiescent ECs, we were interested to see whether

the loss of FMNL3 had any effect on the microtubule
cytoskeleton in ECs undergoing angiogenesis. To examine this,

we used the co-culture assay to study the few, short EC tubes that
formed when cells were treated with FMNL3 siRNA. In keeping
with the effects of activated FMNL3, depletion of FMNL3 had a

profound and significant effect on the ability of ECs to reorganise
the microtubules into parallel arrays (Fig. 8). The EC tubes that
did occur contained sparse, disorganised microtubules that

frequently formed knots or tangles in the body of the vessel
(Fig. 8). Similar microtubule tangles have been reported in HeLa
cells expressing defective mutants of mDia1 (Bartolini et al.,
2008). We conclude that FMNL3 is required for the realignment

of the microtubule cytoskeleton during angiogenesis.

Discussion
In this study, we showed that ECs undergoing angiogenic
morphogenesis reorganise their microtubule cytoskeleton to form
a parallel array of stable microtubules aligned with the long axis

of the elongating cells. This situation is reminiscent of axonal
outgrowth in neurons, where stable microtubules are aligned
towards the growing tip of the cell (Conde and Caceres, 2009).

Many parallels have been drawn between angiogenesis and
neurogenesis (Zacchigna et al., 2008). In both cases, cells must
convert to a highly elongated morphology. In neurons,

Fig. 6. Full-length FMNL3 regulates the EC actin cytoskeleton.

(A,B) ECs were grown in monolayers on fibronectin-coated coverslips and

transfected with GFP-tagged FMNL3 (green). Cell nuclei were stained with

DAPI (blue). (A) Staining for total tubulin (red) showed that the total

microtubule population was unaffected by FMNL3 overexpression. FMNL3

was localised to the plasma membrane and concentrated to a rim around the

periphery of the cells. (B) FMNL3 overexpression did not induce stable

microtubule formation, as shown by staining for glu-tubulin (red).

(C) Overexpression of FMNL3 caused a profound reorganisation of the actin

cytoskeleton, as shown by staining with fluorescent phalloidin (red). Actin

stress fibres were lost and replaced with a fine skein of F-actin filaments.

Scale bars: 10 mm.

Fig. 7. Activated FMNL3 triggers microtubule alignment. (A) ECs were

transfected with an activated FMNL3 mutant comprising the FH2 and FH3

domains (green). Expression of activated FMNL3 (DFMNL3) led to

reorganisation of the radial array of microtubules (red) into a parallel array.

The tips of these microtubules contacted bright patches of FMNL3 staining at

the plasma membrane. The right-hand panel shows a close-up of the area

highlighted in the middle panel. Scale bar: 10 mm. (B) ECs were co-

transfected with GFP–FMNL3 (full-length) and mCherry–tubulin. Cells were

imaged using live cell TIRF to determine the spatial relationship between

FMNL3 and microtubules. The panel shows a frame from a movie

(supplementary material Movie S1). FMNL3 was tightly localised to the

adhesive edge of the cell, where it was present in patches of focussed staining.

Elongating microtubules frequently contacted these bright, plasma membrane

patches of FMNL3 (asterisks).
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microtubule stabilisation precedes initial extension of the axon

(Witte et al., 2008), suggesting that early events in elongation

require the microtubule cytoskeleton. Microtubules are also

required for the subsequent elongation of the axon shaft and for

its morphology (Conde and Caceres, 2009). The growing tip of

the neuron is a flattened region called the growth cone, which

acts to sense directional cues and to guide the direction and rate

of extension (Dent and Gertler, 2003). Whereas the axon shaft

contains a parallel array of stable microtubules, the growth cone

contains highly dynamic microtubules that are required for the

guidance of the growth cone towards chemotactic signals. Stable

microtubules from the axon terminate just within this region and

often display a bent or looped-back appearance (Conde and

Caceres, 2009). Intriguingly, the tips of elongating ECs showed

the same pattern: stable microtubules terminated before the tip

and showed looped-back structures indistinguishable from those

of active growth cones (Fig. 1C). These data suggest that the

mechanisms of cell elongation in angiogenesis and axonogenesis

share a similar cytoskeletal basis.

In elongating neurons, the stable microtubule array acts as a

train track to direct protein trafficking to the growing tip of the

cell. This is crucial for the establishment and maintenance of cell

polarity (Tahirovic and Bradke, 2009). In addition, modifications

of stable microtubules, including detyrosination, allow for
selective recruitment of the microtubule-based motor protein

kinesin-1 (Larcher et al., 1996; Liao and Gundersen, 1998). In
neurons, this recruitment directs kinesin-1 to the stable axonal
microtubules (Hammond et al., 2009). In turn, kinesin-1 binds to
signalling proteins, including the C-Jun-amino-terminal kinase-

interacting protein 1 (JIP-1) signalling scaffold, and directs them
to the axon (Dajas-Bailador et al., 2008). Thus, the stable
microtubule array allows for selective trafficking of cargo

towards the tip of the elongating axon. At the head of the
angiogenic sprout is the tip cell, a specialised EC that detects the
gradient of growth factor and signals to the stalk cells behind it

(Phng and Gerhardt, 2009). We know that VEGF receptor 2 is
concentrated at the front edge of the tip cell during angiogenesis
in vivo and that this polarised distribution of the receptor is
required for effective gradient sensing (Gerhardt et al., 2003).

Recent studies have shown that VEGF receptor 3 is localised in
the same fashion (Nilsson et al., 2010). It is tempting to speculate
that realignment of the microtubule cytoskeleton functions to

allow delivery of these receptors to the leading edge of the tip
cell through mechanisms of polarised traffic.

The formin family of proteins has widespread roles in the

alignment and stabilisation of microtubules in elongating cells
(Bartolini and Gundersen, 2010). In neurons, this function is
dependent on mDia1, which is also required for axonal
elongation (Arakawa et al., 2003). Here, we find no

requirement for mDia1, 2 or 3 for the elongation of ECs during
angiogenesis, but instead find that the uncharacterised formin
FMNL3 is crucial for this process. Depletion of FMNL3 leads to

a loss of microtubule alignment in ECs undergoing angiogenesis
and overexpression of a constitutively active mutant of FMNL3
triggers microtubule alignment in quiescent ECs. Interestingly,

although full-length FMNL3 triggers rearrangements of the actin
cytoskeleton in quiescent ECs, it does not alter microtubule
alignment. This suggests that upstream signals are required for

this function. Similar to many other formins, FMNL3 contains a
conserved binding site for Rho GTPases, which can mediate the
activation and localisation of formins in cells (Baarlink et al.,
2010). It seems probable that Rho GTPases have an important

role in controlling FMNL3 activity during angiogenesis and it
will be important to uncover the angiogenic signalling pathways
controlling FMNL3 function in this process. It will also be

important to pursue the roles of DAAM2 and FHOD1, two
formins that are additional hits in our screen of angiogenic
morphogenesis. One possibility is that these formins control the

stabilisation of EC microtubules, a function that is independent of
FMNL3.

FMNL3 is dispensable for vasculogenesis during zebrafish
development, but is required for angiogenesis. This is consistent

with a role for FMNL3 in EC elongation, as the processes
of vasculogenesis are morphologically distinct to those of
angiogenesis and do not require the same polarised elongations

(Carmeliet, 2000). Interestingly, although FMNL3 is highly
conserved between humans and fish (72% identity), it is absent
from Drosophila, which do not carry out angiogenesis and have a

single, distantly related FMNL-like protein (Liu et al., 2010).
Ciona, which sit at the bottom of the chordate clade, also lack the
gene encoding FMNL3 (data not shown). It would seem that the

duplication of the ancestral gene encoding FMNL that gave rise
to FMNL3 occurred in the same bracket of evolutionary time
as the development of angiogenesis. In zebrafish, FMNL3

Fig. 8. FMNL3 is required for microtubule realignment during

angiogenic morphogenesis. ECs were treated with or without FMNL3

siRNA and then transferred to the co-culture angiogenesis assay. Cells were

stained for PECAM-1 (green) and glu-tubulin (red). ECs in co-culture

contained stable microtubules aligned along the length of the tubule (left

panels). In the few tubules that formed with FMNL3-depleted ECs, the

microtubules still stained for stable microtubule markers; however, alignment

was lost. The stable microtubules that were present were sparse, disorganised

and often seen in knotted structures (arrow). Scale bar: 10 mm. The

percentage of vessels containing aligned stable microtubules was quantified

from three independent experiments and the data analysed using Student’s t-

test (unpaired, two-tailed). Depletion of FMNL3 using either siRNA led to a

significant loss of microtubule alignment (P,0.01).
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expression is almost entirely restricted to the endothelium during
development, and embryos depleted of FMNL3 show no obvious

secondary defects. We conclude that FMNL3 is a specialised
formin with a role that is focussed on angiogenesis.

Materials and Methods
Materials

Monoclonal mouse anti-a-tubulin (clone B-5-1-2) was from Sigma and rabbit
polyclonal anti-glu-tubulin was from Chemicon. Monoclonal mouse (clone 9G11)
and polyclonal sheep antibodies to platelet EC adhesion molecule 1 (PECAM-1)
were from R&D Systems. Monoclonal mouse anti-myc-epitope (9E10) was from
Santa Cruz Biotechnology and rabbit polyclonal antibodies to collagen I and to
mDia1 were from Abcam. Rabbit polyclonal antibodies to mDia2 and mDia3 were
from Protein Tech Group and Bethyl Laboratories, respectively. Rabbit anti-
FMNL3 was a gift from John Copeland. Mouse monoclonal anti-EB1 was from
BD Transduction Laboratories. Alexa Fluor-conjugated fluorescent secondary
antibodies were purchased from Invitrogen, as was Alexa-Fluor-594–phalloidin.
Horseradish-peroxidase-conjugated secondary antibodies were from Jackson
ImmunoResearch.

Plasmids

Human full-length FMNL3 was cloned into the expression vector pEGFP–N3
(Clontech) to make a C-terminal fusion with GFP. The activated FMNL3 mutant
comprised the FH1 and FH2 domains (amino acids 484–964) and was cloned into
the same vector. The mCherry–tubulin expression vector was a generous gift from
Roger Tsien (Shaner et al., 2004).

Cell culture

Human umbilical vein ECs (HUVEC) were collected from umbilical cords as
described previously (Van Hinsbergh and Draijer, 1996). ECs were maintained in
Dulbecco’s modified Eagle’s medium/Ham’s F12 Nutrient mixture (DMEM/F12)
containing 2% heat-inactivated fetal calf serum (Sigma), 1 mg/ml hydrocortisone,
5ng/ml epidermal growth factor (R&D Systems), 10 ng/ml recombinant basic
fibroblast growth factor (R&D Systems), 20 mg/ml heparin sulphate (Sigma), 250 ng/
ml insulin, 100 U/ml penicillin and 100 mg/ml streptomycin. Normal human dermal
fibroblasts (NHDF, PromoCell) were maintained in DMEM with 10% fetal calf
serum, 100 U/ml penicillin, 100 mg/ml streptomycin and 292 mg/ml L-glutamine.

siRNA oligonucleotides and cell transfection

A SmartPool siRNA oligonucleotide library for the human formin family was
designed and synthesised by Dharmacon (Thermo Fisher Scientific). Additional
siRNAs were synthesised by Eurofins. Sequences of all oligonucleotides used are
detailed in supplementary material Table S1. HUVEC were transfected with
siRNA oligonucleotides and/or expression vectors using GeneFECTOR
(VennNova), according to the manufacturer’s instructions.

In vitro angiogenesis assays

A modified version of the co-culture assay of Bishop et al. (Bishop et al., 1999;
Mavria et al., 2006) was used to study angiogenesis in vitro. NHDF were seeded
onto glass coverslips at 36104 cells/ml in endothelial growth media (EGM,
Lonza) and grown until confluent over 5 days. On day 4, ECs were seeded at
46104 cells/ml in fibronectin-coated six-well plates and incubated overnight. On
day 5, ECs were transfected with siRNA, as described above. After incubation for
3 hours, ECs were harvested and seeded onto the confluent NHDF at 36104 cells/
ml in EGM. Medium was refreshed every 2 days. For quantification of vessel
formation, cells were fixed on day 11 in 70% ethanol at 220 C̊ for 30 minutes.
Cells were treated with 0.3% hydrogen peroxide in methanol for 15 minutes to
remove endogenous alkaline phosphatase activity. ECs were labelled with mouse
anti-PECAM-1 antibody in 1% BSA and incubated for 1 hour at 37 C̊. The
labelled endothelial tubes were stained using an alkaline phosphatase-conjugated
secondary antibody and BCIP/NBT substrate (Sigma). In addition to this co-
culture angiogenesis assay, some experiments used an in vitro assay of
angiogenesis in a collagen gel, as described by Bohman et al. (Bohman et al.,
2005). Briefly, serum-starved ECs were seeded at 86105 cells/ml onto a 0.23%
(w/v) collagen I gel (PureColTM, Inamed Biomaterials, The Netherlands). After
2 hours, the cells were overlaid with a second layer of collagen and then the
collagen gel was overlaid with complete growth medium and supplemented with
50 ng/ml VEGF. The 3D culture was maintained for up to 48 hours before being
fixed in paraformaldehyde and then processed for immunofluorescence
microscopy. For siRNA experiments, ECs were transfected with the relevant
siRNA 24 hours before plating on collagen.

Immunofluorescence microscopy

Cells were prepared for confocal immunofluorescence microscopy by fixation in
paraformaldehyde, except for imaging of microtubules, where the cells were fixed

in methanol. Confocal microscopy was performed using a Leica AOBS SP2
confocal laser-scanning microscope with an attached Leica DMIRE2 inverted
microscope. Confocal sections were taken across the z-plane and processed to form
a 2D projection representing the full depth of the cell culture.

TIRF microscopy

ECs were co-transfected with GFP-tagged FMNL3 and mCherry-tagged tubulin.
Live cell imaging of the relationship between FMNL3 localisation and
microtubules was performed using a Leica AM TIRF MC system set at a 70-nm
penetration depth with a 1006 NA 1.47 lens. Images were acquired at two frames
per second using a Hamamatsu C9100 EM-CCD camera. Image stacks were
converted into movies using ImageJ (National Institutes of Health, Bethesda).

Zebrafish angiogenesis

Zebrafish FMNL3 cDNA was amplified from embryo cDNA using PCR.
Digoxigenin-labelled probes for in situ hybridisation were generated by in vitro
transcription using an RNA labelling kit (Roche). Antisense probe was generated
by linearising the plasmid with BamH1 and transcribing with T7. In situ
hybridisation was carried out following previously described methods (Thisse and
Thisse, 2008). To silence FMNL3 expression, a specific morpholino antisense
oligonucleotide was synthesised by Gene Tools LLC, USA. A standard negative
morpholino control was used for comparison. The sequence of each oligo is given
in supplementary material Table S1. Morpholino antisense oligonucleotides were
microinjected into single-cell zebrafish embryos. For rescue experiments, human
FMNL3 mRNA was synthesised by linearising a hFMNL3/pCS2+ plasmid and
transcribing with SP6 polymerase using the mMessage mMachine Kit (Ambion).
This human FMNL3 mRNA was co-injected with the morpholino oligonucleotides,
where indicated.
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