40 research outputs found

    Remote sensing of water vapor features

    Get PDF
    The three major objectives of the project are outlined: (1) to describe atmospheric water vapor features as functions of space and time; (2) to evaluate remotely sensed measurements of water vapor content; and (3) to study relations between fine-scale water vapor fields and convective activity. Data from several remote sensors were used. The studies used the GOES/VAS, HIS, and MAMS instruments have provided a progressively finer scale view of water vapor features

    Remote sensing of water vapor features

    Get PDF
    Water vapor plays a critical role in the atmosphere. It is an important medium of energy exchange between air, land, and water; it is a major greenhouse gas, providing a crucial radiative role in the global climate system; and it is intimately involved in many regional scale atmospheric processes. Our research has been aimed at improving satellite remote sensing of water vapor and better understanding its role in meteorological processes. Our early studies evaluated the current GOES VAS system for measuring water vapor and have used VAS-derived water vapor data to examine pre-thunderstorm environments. Much of that research was described at the 1991 Research Review. A second research component has considered three proposed sensors--the High resolution Interferometer Sounder (HIS), the Multispectral Atmospheric Mapping Sensor (MAMS), and the Advanced Microwave Sounding Unit (AMSU). We have focused on MAMS and AMSU research during the past year and the accomplishments made in this effort are presented

    A diagnostic approach to obtaining planetary boundary layer winds using satellite-derived thermal data

    Get PDF
    The feasibility of using satellite derived thermal data to generate realistic synoptic scale winds within the planetary boundary layer (PBL) is examined. Diagnostic modified Ekman wind equations from the Air Force Global Weather Central (AFGWC) Boundary Layer Model are used to compute winds at seven levels within the PBL transition layer (50 m to 1600 m AGL). Satellite derived winds based on 62 predawn TIROS-N soundings are compared to similarly derived wind fields based on 39 AVE-SESAME II rawinsonde (RAOB) soundings taken 2 h later. Actual wind fields are also used as a basis for comparison. Qualitative and statistical comparisons show that the Ekman winds from both sources are in very close agreement, with an average vector correlation coefficient of 0.815. Best results are obtained at 300 m AGL. Satellite winds tend to be slightly weaker than their RAOB counterparts and exhibit a greater degree of cross-isobaric flow. The modified Ekman winds show a significant improvement over geostrophic values at levels nearest the surface

    The application of VAS satellite imagery to thunderstorm forecasting at Cape Canaveral

    Get PDF
    The Final Report on the application of VAS satellite imagery to thunderstorm forecasting at Cape Canaveral is presented. The objective of this research was to investigate whether satellite-derived imagery and derived products could be used advantageously in forecasting thunderstorms in the Cape Canaveral area. Specifically, data from the VISSR Atmospheric Sounder that is housed on the current series of GOES geostationary meteorological satellites was used. These satellite data were used extensively in the middle latitudes, but their utility over central Florida where the climate is more tropical had not been examined

    An evaluation of satellite-derived humidity and its relationship to convective development

    Get PDF
    An aircraft prototype of the High-Resolution Interferometer Sounder (HIS) was flown over Tennessee and northern Alabama during summer 1986. The HIS temperature and dewpoint soundings were examined on two flight days to determine their error characteristics and utility in mesoscale analyses. Random errors were calculated from structure functions while total errors were obtained by pairing the HIS soundings with radiosonde-derived profiles. Random temperature errors were found to be less than 1 C at most levels, but random dewpoint errors ranged from 1 to 5 C. Total errors of both parameters were considerably greater, with dewpoint errors especially large on the day having a pronounced subsidence inversion. Cumulus cloud cover on 15 June limited HIS mesoscale analyses on that day. Previously undetected clouds were found in many HIS fields of view, and these probably produced the low-level horizontal temperature and dewpoint variations observed in the retrievals. HIS dewpoints at 300 mb indicated a strong moisture gradient that was confirmed by GOES 6.7-micron imagery. HIS mesoscale analyses on 19 June revealed a tongue of humid air stretching across the study area. The moist region was confirmed by radiosonde data and imagery from the Multispectral Atmospheric Mapping Sensor (MAMS). Convective temperatures derived from HIS retrievals helped explain the cloud formation that occurred after the HIS overflights. Crude estimates of Bowen ratio were obtained from HIS data using a mixing-line approach. Values indicated that areas of large sensible heat flux were the areas of first cloud development. These locations were also suggested by GOES visible and infrared imagery. The HIS retrievals indicated that areas of thunderstorm formation were regions of greatest instability. Local landscape variability and atmospheric temperature and humidity fluctuations were found to be important factors in producing the cumulus clouds on 19 June. HIS soundings were capable of detecting some of this variability. The authors were impressed by HIS's performance on the two study days

    A Simulation and Diagnostic Study of Water Vapor Image Dry Bands

    Get PDF
    A Limited Area Mesoscale Prediction System (LAMPS) model simulation and special 3-hour radiosonde dataset are used to investigate warm (dry) bands in 6,7 μm water vapor satellite imagery on 6–7 March 1982. The purpose is to reveal processes resulting in the formation and evolution of the dry features that appear as curving dark streaks in the imagery. Model soundings are input to a radiative transfer algorithm to generate synthetic 6.7 μm equivalent blackbody temperatures (TB) which are compared with those from the Visible infrared Spin Scan Radiometer Atmospheric Sounder aboard the Geostationary Operational Environmental Satellite. Simulated and radiosonde-derived vertical velocity and humidity also are compared with the images. Finally, trajectories are calculated from both radiosonde data and LAMPS output. The model reproduces major characteristics of the observed TB field. A “development” dry image feature occurs in conjunction with an upper level shortwave trough, and an “advective” feature is associated with a polar jet streak. Both model and observed TB features are associated with vorticity maxima. The development feature forms as moisture gradients are enhanced by differential subsidence early in the study period. Horizontal wind shear then narrows the incipient dry area into its streak-like shape. Trajectories reveal that air parcels ending in the development streak move with it, in northwesterly, subsiding flow throughout the study period. Near the leading edge of the streak, ahead of the short-wave trough, flow is southwesterly and ascending. Air parcels in the advective image feature sink in the wake of the vorticity maximum, move through it in the jet flow, and finally ascend ahead of it. Thus, warm TB regions do not equate with instantaneous subsidence patterns, but reflect a long history of parcel motions which can include ascent as well

    Simulations of the Effects of Water Vapor, Cloud Liquid Water, and Ice on AMSU Moisture Channel Brightness Temperatures

    Get PDF
    Radiative transfer simulations are performed to determine how water vapor and nonprecipitating cloud liquid water and ice particles within typical midlatitude atmospheres affect brightness temperatures T-B\u27s of moisture sounding channels used in the Advanced Microwave Sounding Unit (AMSU) and AMSU-like instruments. The purpose is to promote a general understanding of passive top-of-atmosphere T-B\u27s for window frequencies at 23.8, 89.0, and 157.0 GHz, and water vapor frequencies at 176.31, 180.31, and 182.31 GHz by documenting specific examples. This is accomplished through detailed analyses of T-B\u27s for idealized atmospheres, mostly representing temperate conditions over land. Cloud effects are considered in terms of five basic properties: droplet size distribution phase, liquid or ice water content, altitude, and thickness. Effects on T-B of changing surface emissivity also are addressed. The brightness temperature contribution functions are presented as an aid to physically interpreting AMSU T-B\u27s. Both liquid and ice clouds impact the T-B\u27s in a variety of ways. The T-B\u27s at 23.8 and 89 GHz are more strongly affected by altostratus liquid clouds than by cirms clouds for equivalent water paths. In contrast, channels near 157 and 183 GHz are more strongly affected by ice clouds. Higher clouds have a greater impact on 157- and 183-GHz T-B\u27s than do lower clouds. Clouds depress T-B\u27s of the higher-frequency channels by suppressing, but not necessarily obscuring, radiance contributions from below. Thus, T-B\u27s are less closely associated with cloud-top temperatures than are IR radiometric temperatures. Water vapor alone accounts for up to 89% of the total attenuation by a midtropospheric liquid cloud for channels near 183 GHz. The Rayleigh approximation is found to be adequate for typical droplet size distributions; however, Mie scattering effects from liquid droplets become important for droplet size distribution functions with modal radii greater than 20 mu m near 157 and 183 GHz, and greater than 30-40 mu m at 89 GHz. This is due mainly to the relatively small concentrations of droplets much larger than the mode radius. Orographic clouds and tropical cumuli have been observed to contain droplet size distributions with mode radii in the 30-40-mu m range. Thus, as new instruments bridge the gap between microwave and infrared to frequencies even higher than 183 GHz, radiative transfer modelers are cautioned to explicitly address scattering characteristics of such clouds

    An Alternative Representation of the Ice Canopy for Calculating Microwave Brightness Temperatures Over a Thunderstorm

    Get PDF
    Passive microwave brightness temperatures (T(B)\u27s) at 92 and 183 GHz from an aircraft thunderstorm overflight are compared with values calculated from radar-derived hydrometeor profiles and a modified proximity sounding. Two methods for modeling particles in the ice canopy are contrasted. The first is a \u27\u27traditional\u27\u27 approach employing Marshall-Palmer ice spheres. The second, or \u27\u27alternative,\u27\u27 method partitions 20% of the ice water content into a Marshall-Palmer component for graupel and hail, and 80% into a modified gamma spherical particle size distribution function representing ice crystals. Results from the alternative approach are superior to those from the traditional method in the anvil and mature convective core. In the decaying convective region, the traditional approach yields better agreement with observed magnitudes. Neither method, however, matches the geometry of the observed TB depression associated with the decaying convective core. This is likely due to the presence of graupel, which is not detected as a special signature in radar reflectivity, but does diminish T(B)\u27s through scattering. Brightness temperatures at the relatively high microwave frequencies considered are shown to be very sensitive to the ice-particle size distribution

    Analysis and use of VAS satellite data

    Get PDF
    Four interrelated investigations have examined the analysis and use of VAS satellite data. A case study of VAS-derived mesoscale stability parameters suggested that they would have been a useful supplement to conventional data in the forecasting of thunderstorms on the day of interest. A second investigation examined the roles of first guess and VAS radiometric data in producing sounding retrievals. Broad-scale patterns of the first guess, radiances, and retrievals frequently were similar, whereas small-scale retrieval features, especially in the dew points, were often of uncertain origin. Two research tasks considered 6.7 micron middle tropospheric water vapor imagery. The first utilized radiosonde data to examine causes for two areas of warm brightness temperature. Subsidence associated with a translating jet streak was important. The second task involving water vapor imagery investigated simulated imagery created from LAMPS output and a radiative transfer algorithm. Simulated image patterns were found to compare favorably with those actually observed by VAS. Furthermore, the mass/momentum fields from LAMPS were powerful tools for understanding causes for the image configurations

    Analysis and use of VAS satellite data

    Get PDF
    A series of interrelated investigations has examined the analysis and use of VAS (VISSR Atmospheric Sounder) satellite data. A case study of VAS-derived mesoscale stability parameters suggested that they would have been a useful supplement to conventional data in the forecasting of thunderstorms on the day of interest. However, the meteorological significance of small or short lived stability features was uncertain. A second investigation examined the roles of first guess and VAS radiometric data in producing sounding retrievals. The radiance data often did not have a decisive influence on the final satellite soundings. Broad-scale patterns of the first guess, radiances, and retrievals frequently were similar, whereas small scale retrieval features, especially in the dew points, were often of uncertain origin
    corecore