50 research outputs found
Defective ALK5 signaling in the neural crest leads to increased postmigratory neural crest cell apoptosis and severe outflow tract defects
BACKGROUND: Congenital cardiovascular diseases are the most common form of birth defects in humans. A substantial portion of these defects has been associated with inappropriate induction, migration, differentiation and patterning of pluripotent cardiac neural crest stem cells. While TGF-β-superfamily signaling has been strongly implicated in neural crest cell development, the detailed molecular signaling mechanisms in vivo are still poorly understood. RESULTS: We deleted the TGF-β type I receptor Alk5 specifically in the mouse neural crest cell lineage. Failure in signaling via ALK5 leads to severe cardiovascular and pharyngeal defects, including inappropriate remodeling of pharyngeal arch arteries, abnormal aortic sac development, failure in pharyngeal organ migration and persistent truncus arteriosus. While ALK5 is not required for neural crest cell migration, our results demonstrate that it plays an important role in the survival of post-migratory cardiac neural crest cells. CONCLUSION: Our results demonstrate that ALK5-mediated signaling in neural crest cells plays an essential cell-autonomous role in the pharyngeal and cardiac outflow tract development
Tissue Origins and Interactions in the Mammalian Skull Vault
AbstractDuring mammalian evolution, expansion of the cerebral hemispheres was accompanied by expansion of the frontal and parietal bones of the skull vault and deployment of the coronal (fronto-parietal) and sagittal (parietal–parietal) sutures as major growth centres. Using a transgenic mouse with a permanent neural crest cell lineage marker, Wnt1-Cre/R26R, we show that both sutures are formed at a neural crest–mesoderm interface: the frontal bones are neural crest-derived and the parietal bones mesodermal, with a tongue of neural crest between the two parietal bones. By detailed analysis of neural crest migration pathways using X-gal staining, and mesodermal tracing by DiI labelling, we show that the neural crest–mesodermal tissue juxtaposition that later forms the coronal suture is established at E9.5 as the caudal boundary of the frontonasal mesenchyme. As the cerebral hemispheres expand, they extend caudally, passing beneath the neural crest–mesodermal interface within the dermis, carrying with them a layer of neural crest cells that forms their meningeal covering. Exposure of embryos to retinoic acid at E10.0 reduces this meningeal neural crest and inhibits parietal ossification, suggesting that intramembranous ossification of this mesodermal bone requires interaction with neural crest-derived meninges, whereas ossification of the neural crest-derived frontal bone is autonomous. These observations provide new perspectives on skull evolution and on human genetic abnormalities of skull growth and ossification
Allelic variants between mouse substrains BALB/cJ and BALB/cByJ influence mononuclear cardiomyocyte composition and cardiomyocyte nuclear ploidy.
Most mouse cardiomyocytes (CMs) become multinucleated shortly after birth via endoreplication and interrupted mitosis, which persists through adulthood. The very closely related inbred mouse strains BALB/cJ and BALB/cByJ differ substantially (6.6% vs. 14.3%) in adult mononuclear CM level. This difference is the likely outcome of a single X-linked polymorphic gene that functions in a CM-nonautonomous manner, and for which the BALB/cByJ allele is recessive to that of BALB/cJ. From whole exome sequence we identified two new X-linked protein coding variants that arose de novo in BALB/cByJ, in the genes Gdi1 (R276C) and Irs4 (L683F), but show that neither affects mononuclear CM level individually. No BALB/cJ-specific X-linked protein coding variants were found, implicating instead a variant that influences gene expression rather than encoded protein function. A substantially higher percentage of mononuclear CMs in BALB/cByJ are tetraploid (66.7% vs. 37.6% in BALB/cJ), such that the overall level of mononuclear diploid CMs between the two strains is similar. The difference in nuclear ploidy is the likely result of an autosomal polymorphism, for which the BALB/cByJ allele is recessive to that of BALB/cJ. The X-linked and autosomal genes independently influence mitosis such that their phenotypic consequences can be combined or segregated by appropriate breeding, implying distinct functions in karyokinesis and cytokinesis
A developmental transition in definitive erythropoiesis: erythropoietin expression is sequentially regulated by retinoic acid receptors and HNF4
The cytokine erythropoietin (Epo) promotes erythropoietic progenitor cell proliferation and is required for erythropoietic differentiation. We have found that the Epo gene is a direct transcriptional target gene of retinoic acid signaling during early erythropoiesis (prior to embryonic day E12.5) in the fetal liver. Mouse embryos lacking the retinoic acid receptor gene RXRα have a morphological and histological phenotype that is comparable with embryos in which the Epo gene itself has been mutated, and flow cytometric analysis indicates that RXRα-deficient embryos are deficient in erythroid differentiation. Epo mRNA levels are reduced substantially in the fetal livers of RXRα ^(−/−)embryos at E10.25 and E11.25, and genetic analysis shows that theRXRα and Epo genes are coupled in the same pathway. We furthermore show that the Epo gene is retinoic acid inducible in embryos, and that the Epo gene enhancer contains a DR2 sequence that represents a retinoic acid receptor-binding site and a retinoic acid receptor transcriptional response element. However, unlike Epo-deficient embryos that die from anemia, the erythropoietic deficiency in RXRα ^(−/−) embryos is transient; Epo mRNA is expressed at normal levels by E12.5, and erythropoiesis and liver morphology are normal by E14.5. We show that HNF4, like RXRα a member of the nuclear receptor family, is abundantly expressed in fetal liver hepatocytes, and is competitive with retinoic acid receptors for occupancy of the Epo gene enhancer DR2 element. We propose that Epo expression is regulated during the E9.5–E11.5 phase of fetal liver erythropoiesis by RXRα and retinoic acid, and that expression then becomes dominated by HNF_4 activity from E11.5 onward. This transition may be responsible for switching regulation of Epo expression from retinoic acid control to hypoxic control, as is found throughout the remainder of life
A regulatory domain that directs lineage-specific expression of a skeletal matrix protein gene in the sea urchin embryo
DNA sequences derived from the 5' region of a gene coding for the 50-kD skeletal matrix protein (SM50) of sea urchin embryo spicules were linked to the CAT reporter gene and injected into unfertilized eggs. CAT mRNA and enzyme were synthesized from these fusion constructs in embryos derived from these eggs, and in situ hybridization with a CAT antisense RNA probe demonstrated that expression is confined to skeletogenic mesenchyme cells. A mean of 5.5 of the 32-blastula-stage skeletogenic mesenchyme cells displayed CAT mRNA (range 1-15), a result consistent with earlier measurements indicating that incorporation of the exogenous injected DNA probably occurs in a single blastomere during early cleavage. In vitro mutagenesis and deletion experiments showed that CAT enzyme activity in the transgenic embryos is enhanced 34-fold by decreasing the number of SM50 amino acids at the amino-terminus of the fusion protein from 43 to 4. cis-regulatory sequences that are sufficient to promote lineage-specific spatial expression in the embryo are located between -440 and +120 with respect to the transcriptional initiation site
Endothelins are vascular-derived axonal guidance cues for developing sympathetic neurons
During development, sympathetic neurons extend axons along a myriad of distinct trajectories, often consisting of arteries, to innervate one of a large variety of distinct final target tissues. Whether or not subsets of neurons within complex sympathetic ganglia are predetermined to innervate select end-organs is unknown. Here we demonstrate in mouse embryos that the endothelin family member Edn3 (ref. 1), acting through the endothelin receptor EdnrA (refs 2, 3), directs extension of axons of a subset of sympathetic neurons from the superior cervical ganglion to a preferred intermediate target, the external carotid artery, which serves as the gateway to select targets, including the salivary glands. These findings establish a previously unknown mechanism of axonal pathfinding involving vascular-derived endothelins, and have broad implications for endothelins as general mediators of axonal growth and guidance in the developing nervous system. Moreover, they suggest a model in which newborn sympathetic neurons distinguish and choose between distinct vascular trajectories to innervate their appropriate end organs.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/62906/1/nature06859.pd
Frequency of mononuclear diploid cardiomyocytes underlies natural variation in heart regeneration
Adult mammalian cardiomyocyte regeneration after injury is thought to be minimal. Mononuclear diploid cardiomyocytes (MNDCMs), a relatively small subpopulation in the adult heart, may account for the observed degree of regeneration, but this has not been tested. We surveyed 120 inbred mouse strains and found that the frequency of adult mononuclear cardiomyocytes was surprisingly variable (>7-fold). Cardiomyocyte proliferation and heart functional recovery after coronary artery ligation both correlated with pre-injury MNDCM content. Using genome-wide association, we identified Tnni3k as one gene that influences variation in this composition and demonstrated that Tnni3k knockout resulted in elevated MNDCM content and increased cardiomyocyte proliferation after injury. Reciprocally, overexpression of Tnni3k in zebrafish promoted cardiomyocyte polyploidization and compromised heart regeneration. Our results corroborate the relevance of MNDCMs in heart regeneration. Moreover, they imply that intrinsic heart regeneration is not limited nor uniform in all individuals, but rather is a variable trait influenced by multiple genes
Msx1 and Msx2 are required for endothelial-mesenchymal transformation of the atrioventricular cushions and patterning of the atrioventricular myocardium
<p>Abstract</p> <p>Background</p> <p><it>Msx1 </it>and <it>Msx2</it>, which belong to the highly conserved <it>Nk </it>family of homeobox genes, display overlapping expression patterns and redundant functions in multiple tissues and organs during vertebrate development. <it>Msx1 </it>and <it>Msx2 </it>have well-documented roles in mediating epithelial-mesenchymal interactions during organogenesis. Given that both <it>Msx1 </it>and <it>Msx2 </it>are crucial downstream effectors of Bmp signaling, we investigated whether <it>Msx1 </it>and <it>Msx2 </it>are required for the Bmp-induced endothelial-mesenchymal transformation (EMT) during atrioventricular (AV) valve formation.</p> <p>Results</p> <p>While both <it>Msx1-/- </it>and <it>Msx2-/- </it>single homozygous mutant mice exhibited normal valve formation, we observed hypoplastic AV cushions and malformed AV valves in <it>Msx1-/-; Msx2-/- </it>mutants, indicating redundant functions of <it>Msx1 </it>and <it>Msx2 </it>during AV valve morphogenesis. In <it>Msx1/2 </it>null mutant AV cushions, we found decreased Bmp2/4 and <it>Notch1 </it>signaling as well as reduced expression of <it>Has2</it>, <it>NFATc1 </it>and <it>Notch1</it>, demonstrating impaired endocardial activation and EMT. Moreover, perturbed expression of chamber-specific genes <it>Anf</it>, <it>Tbx2</it>, <it>Hand1 </it>and <it>Hand2 </it>reveals mispatterning of the <it>Msx1/2 </it>double mutant myocardium and suggests functions of <it>Msx1 </it>and <it>Msx2 </it>in regulating myocardial signals required for remodelling AV valves and maintaining an undifferentiated state of the AV myocardium.</p> <p>Conclusion</p> <p>Our findings demonstrate redundant roles of <it>Msx1 </it>and <it>Msx2 </it>in regulating signals required for development of the AV myocardium and formation of the AV valves.</p
Endothelial Neuropilin Disruption in Mice Causes DiGeorge Syndrome-Like Malformations via Mechanisms Distinct to Those Caused by Loss of Tbx1
The spectrum of human congenital malformations known as DiGeorge syndrome (DGS) is replicated in mice by mutation of Tbx1. Vegfa has been proposed as a modifier of DGS, based in part on the occurrence of comparable phenotypes in Tbx1 and Vegfa mutant mice. Many additional genes have been shown to cause DGS-like phenotypes in mice when mutated; these generally intersect in some manner with Tbx1, and therefore impact the same developmental processes in which Tbx1 itself is involved. In this study, using Tie2Cre, we show that endothelial-specific mutation of the gene encoding the VEGFA coreceptor neuropilin-1 (Nrp1) also replicates the most prominent terminal phenotypes that typify DGS. However, the developmental etiologies of these defects are fundamentally different from those caused by absence of TBX1. In Tie2Cre/Nrp1 mutants, initial pharyngeal organization is normal but subsequent pharyngeal organ growth is impaired, second heart field differentiation is normal but cardiac outflow tract cushion organization is distorted, neural crest cell migration is normal, and palatal mesenchyme proliferation is impaired with no change in apoptosis. Our results demonstrate that impairment of VEGF-dependent endothelial pathways leads to a spectrum of DiGeorge syndrome-type malformations, through processes that are distinguishable from those controlled by Tbx1