22 research outputs found

    2-D and 3-D Temporal Modeling of Solute Migration through Low Permeable Media using Electrical Resistivity, Nacogdoches County, Texas

    Get PDF
    The Reklaw Formation is the upper bounding unit for the Carrizo-Wilcox Aquifer throughout the Gulf Coastal Plain of East Texas and consists of low permeability, glauconite-rich strata that isolate semi-confined portions of the aquifer system from potential contaminants. Electrical resistivity methods were employed within a forested watershed in Nacogdoches County, Texas to characterize solute transport. 2-D and 3-D temporal resistivity data collected with an AGI SuperSting (R8/IP) were processed with AGI Earthimager 2D/3D software for inversion modeling. Data were collected over 135 days within a 14 X 26 meter (46 X 85 feet) gridded survey at 15-day intervals after initiation of a NaCl solute plume; numerical modeling was developed from physical site characterizations. Resistivity analyses and numerical modeling demonstrated solute migration is extremely slow within the Reklaw Formation, confirming strata effectiveness for preventing contaminant migration into the Carrizo-Wilcox Aquifer. Numerical modeling indicated rapid solute dilution with migration dominated by diffusion. 2-D inversion modeling confirmed dominance of solute diffusion, but clearly identified macropore heterogeneity that increased advection transport; 3-D inversion modeling proved relatively ineffective. This study demonstrates the effectiveness of electrical resistivity characterization for delineating heterogenic and anisotropic controls on solute migration that are often poorly defined in simple numerical modeling

    Study of an unusually high level of N-glycolylneuraminic acid (NGNA) sialylation on a monoclonal antibody expressed in Chinese hamster ovary cells

    Get PDF
    Sialic or neuraminic acids of recombinant therapeutic glycoproteins produced in mammalian cells, including monoclonal antibodies, have significant impact on the half-life, stability, and biological activity of these proteins (Hossler et al., 2009; Ghaderi et al., 2012). The predominant sialic acid N-acetylneuraminic acid (NANA or Neu5Ac) is added from precursor CMP-NANA to galactose residues of N-linked glycoproteins by sialytransferases. In most mammals CMP-NANA can also be modified to its hydroxylated derivative CMP-NGNA by CMP-N-acetylneuraminic acid hydroxylase (CMAH). NGNA can then be added from CMP-NGNA to galactose residues of the N-linked glycoproteins, also by sialytransferases. However, humans cannot make functional CMAH due to an inactivating exon deletion mutation in CMAH gene (Okerblom and Varki, 2017), and therefore cannot convert CMP-NANA to CMP-NGNA. Consequently, when injected into human patients, NGNA sialic acid containing mAbs or other recombinant glycoproteins may induce immune responses, which could negatively impact pharmacokinetics or efficacy. Therefore high levels of NGNA on therapeutic mAbs or other recombinant glycoproteins are an undesirable product quality attribute. The level of total sialic acids of recombinant glycoproteins produced in Chinese hamster ovary (CHO) cells is dictated largely by the selected cell lines, upstream process, and to a lesser degree, downstream process. NGNA sialylation is generally rare in CHO cells (Könitzer et al., 2015). Hence, therapeutic glycoproteins manufactured in these cells are considered safe for human use. However, during a first-in-human (FIH) upstream process development for a novel mAb, an initially selected desirable cell line (A) was found to produce the mAb with an unexpectedly high level of the NGNA sialic acid (\u3e30%). To the best of our knowledge such high level of NGNA sialylation on a mAb produced by CHO cells has not been reported. To mitigate potential risks associated with high NGNA in human patients, a new cell line (B) that produces the mAb with very low NGNA was selected as the manufacturing cell line for this project. In order to understand the molecular mechanism causing the high NGNA content in cell line A, we initiated comprehensive genetic gap analyses using next-generation sequencing technologies and determined the differences in genomic, transcriptomic, and miRnomic profiles of the two cell lines. The results indicate spontaneous upregulation of CMAH mRNA expression, at least 10 fold higher in cell line A compared to cell line B. In this talk we will summarize the results of our studies of this unusual sialylation behavior in CHO cells

    Accreditation Information Produced By United States Law Schools To The American Bar Association Should Be Made Available To The Public From Both Law and Policy Perspectives

    No full text
    This article argues that, from a legal perspective, the American Bar Association ( ABA ) is the functional equivalent of a government agency and so is subject to the United States Freedom of Information Act. Under Soucie v. David and related cases, the fact that the ABA has the final decision-making authority to decide whether a United States law school is or is not to be accredited renders it the functional equivalent of a government agency, and the ABA\u27s refusal to make available to the public the voluminous amount of important information produced to the ABA by law schools going through the accreditation and accreditation review processes is illegal and would not likely survive a challenge in court. In addition, as the closure of a number of United States law schools over the last few years, and in particular the closure of the Charlotte School of Law in 2017, make clear, a strong public policy also exists for the ABA to make available to the public the information it obtains from law schools during accreditation and accreditation review processes

    PERCEPTION OF STAKEHOLDERS ON INTEGRATION OF WORK-BASED LEARNING (WBL) INTO AUTOMOBILE TECHNOLOGY EDUCATION CURRICULUM OF NIGERIAN CERTIFICATE IN EDUCATION (TECHNICAL) IN NORTHEAST NIGERIA

    No full text
    This study sought to evaluate the perception of stakeholders on integration of WBL into Automobile Technology Education curriculum of Nigeria Certificate in Education (Technical), in Northeast Nigeria. The study was guided by three (3) objectives, and three (3) research questions. A descriptive survey research design was used for the study; the population of the study is 172, which comprise students, lecturers, technologists, and industry-based automobile staff with. A sample of 140 was used for the study, in the ratio of 64, 47, 11 and 18 of the population respectively. The instrument for the study was a structured questionnaire developed by the researchers. The instrument titled Automobile Technology Education Work-Based Learning Questionnaire is made up of 34 items. Its statements are meant to elicit respondents’ opinion on challenges of integration of WBL in Automobile Technology Education Curriculum of NCE Technical. The instrument validated by three experts from Technology Education Department of Modibbo Adama University Yola and trial tested to yield a reliability coefficient of 0.72, Research questions were answered using mean, and standard deviation. Findings of the study revealed that; stakeholders perceived that WBL integration into automobile technology education curriculum will face many challenges among which are: rejection of students from training institution for further training by managers of industries, ineffective policy framework for work-based training period etc. It also found that solutions to the challenges as: acceptance of students from training institutions by managers of industries, provision of modern facilities for training among others

    Deep Underground Neutrino Experiment (DUNE) Near Detector Conceptual Design Report

    No full text
    International audienceThe Deep Underground Neutrino Experiment (DUNE) is an international, world-class experiment aimed at exploring fundamental questions about the universe that are at the forefront of astrophysics and particle physics research. DUNE will study questions pertaining to the preponderance of matter over antimatter in the early universe, the dynamics of supernovae, the subtleties of neutrino interaction physics, and a number of beyond the Standard Model topics accessible in a powerful neutrino beam. A critical component of the DUNE physics program involves the study of changes in a powerful beam of neutrinos, i.e., neutrino oscillations, as the neutrinos propagate a long distance. The experiment consists of a near detector, sited close to the source of the beam, and a far detector, sited along the beam at a large distance. This document, the DUNE Near Detector Conceptual Design Report (CDR), describes the design of the DUNE near detector and the science program that drives the design and technology choices. The goals and requirements underlying the design, along with projected performance are given. It serves as a starting point for a more detailed design that will be described in future documents

    Reconstruction of interactions in the ProtoDUNE-SP detector with Pandora

    No full text
    International audienceThe Pandora Software Development Kit and algorithm libraries provide pattern-recognition logic essential to the reconstruction of particle interactions in liquid argon time projection chamber detectors. Pandora is the primary event reconstruction software used at ProtoDUNE-SP, a prototype for the Deep Underground Neutrino Experiment far detector. ProtoDUNE-SP, located at CERN, is exposed to a charged-particle test beam. This paper gives an overview of the Pandora reconstruction algorithms and how they have been tailored for use at ProtoDUNE-SP. In complex events with numerous cosmic-ray and beam background particles, the simulated reconstruction and identification efficiency for triggered test-beam particles is above 80% for the majority of particle type and beam momentum combinations. Specifically, simulated 1 GeV/cc charged pions and protons are correctly reconstructed and identified with efficiencies of 86.1±0.6\pm0.6% and 84.1±0.6\pm0.6%, respectively. The efficiencies measured for test-beam data are shown to be within 5% of those predicted by the simulation

    Separation of track- and shower-like energy deposits in ProtoDUNE-SP using a convolutional neural network

    No full text
    International audienceLiquid argon time projection chamber detector technology provides high spatial and calorimetric resolutions on the charged particles traversing liquid argon. As a result, the technology has been used in a number of recent neutrino experiments, and is the technology of choice for the Deep Underground Neutrino Experiment (DUNE). In order to perform high precision measurements of neutrinos in the detector, final state particles need to be effectively identified, and their energy accurately reconstructed. This article proposes an algorithm based on a convolutional neural network to perform the classification of energy deposits and reconstructed particles as track-like or arising from electromagnetic cascades. Results from testing the algorithm on experimental data from ProtoDUNE-SP, a prototype of the DUNE far detector, are presented. The network identifies track- and shower-like particles, as well as Michel electrons, with high efficiency. The performance of the algorithm is consistent between experimental data and simulation

    Highly-parallelized simulation of a pixelated LArTPC on a GPU

    No full text
    The rapid development of general-purpose computing on graphics processing units (GPGPU) is allowing the implementation of highly-parallelized Monte Carlo simulation chains for particle physics experiments. This technique is particularly suitable for the simulation of a pixelated charge readout for time projection chambers, given the large number of channels that this technology employs. Here we present the first implementation of a full microphysical simulator of a liquid argon time projection chamber (LArTPC) equipped with light readout and pixelated charge readout, developed for the DUNE Near Detector. The software is implemented with an end-to-end set of GPU-optimized algorithms. The algorithms have been written in Python and translated into CUDA kernels using Numba, a just-in-time compiler for a subset of Python and NumPy instructions. The GPU implementation achieves a speed up of four orders of magnitude compared with the equivalent CPU version. The simulation of the current induced on 10310^3 pixels takes around 1 ms on the GPU, compared with approximately 10 s on the CPU. The results of the simulation are compared against data from a pixel-readout LArTPC prototype

    Reconstruction of interactions in the ProtoDUNE-SP detector with Pandora

    No full text
    International audienceThe Pandora Software Development Kit and algorithm libraries provide pattern-recognition logic essential to the reconstruction of particle interactions in liquid argon time projection chamber detectors. Pandora is the primary event reconstruction software used at ProtoDUNE-SP, a prototype for the Deep Underground Neutrino Experiment far detector. ProtoDUNE-SP, located at CERN, is exposed to a charged-particle test beam. This paper gives an overview of the Pandora reconstruction algorithms and how they have been tailored for use at ProtoDUNE-SP. In complex events with numerous cosmic-ray and beam background particles, the simulated reconstruction and identification efficiency for triggered test-beam particles is above 80% for the majority of particle type and beam momentum combinations. Specifically, simulated 1 GeV/cc charged pions and protons are correctly reconstructed and identified with efficiencies of 86.1±0.6\pm0.6% and 84.1±0.6\pm0.6%, respectively. The efficiencies measured for test-beam data are shown to be within 5% of those predicted by the simulation

    DUNE Offline Computing Conceptual Design Report

    No full text
    This document describes Offline Software and Computing for the Deep Underground Neutrino Experiment (DUNE) experiment, in particular, the conceptual design of the offline computing needed to accomplish its physics goals. Our emphasis in this document is the development of the computing infrastructure needed to acquire, catalog, reconstruct, simulate and analyze the data from the DUNE experiment and its prototypes. In this effort, we concentrate on developing the tools and systems thatfacilitate the development and deployment of advanced algorithms. Rather than prescribing particular algorithms, our goal is to provide resources that are flexible and accessible enough to support creative software solutions as HEP computing evolves and to provide computing that achieves the physics goals of the DUNE experiment
    corecore