7,362 research outputs found

    The effect of different module configurations on the radiation tolerance of multijunction solar cells

    Get PDF
    The effect of different module configurations on the performance of multijunction (MJ) solar cells in a radiation environment was investigated. Module configuration refers to the electrical circuit in which the subcells of the multijunction cell are wired. Experimental data for AlCaAs, GaAs, InGaAs, and silicon single-junction concentrator cells subjected to 1 MeV electron irradiation was used to calculate the expected performance of AlGaAs/InGaAs, AlGa/silicon, GaAs/InGaAs, and GaAs/silicon Mj concentrator cells. These calculations included independent, series, and voltage-matched configurations. The module configuration was found to have a significant impact on the radiation tolerance characteristic of the MJ cells

    A comparison of the radiation tolerance characteristics of multijunction solar cells with series and voltage-matched configurations

    Get PDF
    The effect of series and voltage-matched configurations on the performance of multijunction solar cells in a radiation environment was investigated. It was found that the configuration of the multijunction solar cell can have a significant impact on its radiation tolerance characteristics

    The Social Construction of a Hate Crime Epidemic

    Get PDF

    Effects of vildagliptin on ventricular function in patients with type 2 diabetes mellitus and heart failure: a randomized placebo-controlled trial

    Get PDF
    Objectives: This study sought to examine the safety of the dipeptidyl peptidase-4 inhibitor, vildagliptin, in patients with heart failure and reduced ejection fraction. Background: Many patients with type 2 diabetes mellitus have heart failure and it is important to know about the safety of new treatments for diabetes in these individuals. Methods: Patients 18 to 85 years of age with type 2 diabetes and heart failure (New York Heart Association functional class I to III and left ventricular ejection fraction [LVEF] <0.40) were randomized to 52 weeks treatment with vildagliptin 50 mg twice daily (50 mg once daily if treated with a sulfonylurea) or matching placebo. The primary endpoint was between-treatment change from baseline in echocardiographic LVEF using a noninferiority margin of −3.5%. Results: A total of 254 patients were randomly assigned to vildagliptin (n = 128) or placebo (n = 126). Baseline LVEF was 30.6 ± 6.8% in the vildagliptin group and 29.6 ± 7.7% in the placebo group. The adjusted mean change in LVEF was 4.95 ± 1.25% in vildagliptin treated patients and 4.33 ± 1.23% in placebo treated patients, a difference of 0.62 (95% confidence interval [CI]: −2.21 to 3.44; p = 0.667). This difference met the predefined noninferiority margin of −3.5%. Left ventricular end-diastolic and end-systolic volumes increased more in the vildagliptin group by 17.1 ml (95% CI: 4.6 to 29.5 ml; p = 0.007) and 9.4 ml (95% CI: −0.49 to 19.4 ml; p = 0.062), respectively. Decrease in hemoglobin A1c from baseline to 16 weeks, the main secondary endpoint, was greater in the vildagliptin group: −0.62% (95% CI: −0.93 to −0.30%; p < 0.001; −6.8 mmol/mol; 95% CI: −10.2 to −3.3 mmol/mol). Conclusions: Compared with placebo, vildagliptin had no major effect on LVEF but did lead to an increase in left ventricular volumes, the cause and clinical significance of which is unknown. More evidence is needed regarding the safety of dipeptidyl peptidase-4 inhibitors in patients with heart failure and left ventricular systolic dysfunction. (Effect of Vildagliptin on Left Ventricular Function in Patients With Type 2 Diabetes and Congestive Heart Failure; NCT00894868

    Propulsion simulation for magnetically suspended wind tunnel models

    Get PDF
    The feasibility of simulating propulsion-induced aerodynamic effects on scaled aircraft models in wind tunnels employing Magnetic Suspension and Balance Systems. The investigation concerned itself with techniques of generating exhaust jets of appropriate characteristics. The objectives were to: (1) define thrust and mass flow requirements of jets; (2) evaluate techniques for generating propulsive gas within volume limitations imposed by magnetically-suspended models; (3) conduct simple diagnostic experiments for techniques involving new concepts; and (4) recommend experiments for demonstration of propulsion simulation techniques. Various techniques of generating exhaust jets of appropriate characteristics were evaluated on scaled aircraft models in wind tunnels with MSBS. Four concepts of remotely-operated propulsion simulators were examined. Three conceptual designs involving innovative adaptation of convenient technologies (compressed gas cylinders, liquid, and solid propellants) were developed. The fourth innovative concept, namely, the laser-assisted thruster, which can potentially simulate both inlet and exhaust flows, was found to require very high power levels for small thrust levels

    A Long-Term Study of Ecological Impacts of River Channelization on the Population of an Endangered Fish: Lessons Learned for Assessment and Restoration

    Get PDF
    Projects to assess environmental impact or restoration success in rivers focus on project-specific questions but can also provide valuable insights for future projects. Both restoration actions and impact assessments can become “adaptive” by using the knowledge gained from long-term monitoring and analysis to revise the actions, monitoring, conceptual model, or interpretation of findings so that subsequent actions or assessments are better informed. Assessments of impact or restoration success are especially challenging when the indicators of interest are imperiled species and/or the impacts being addressed are complex. From 1997 to 2015, we worked closely with two federal agencies to monitor habitat availability for and population density of Roanoke logperch (Percina rex), an endangered fish, in a 24-km-long segment of the upper Roanoke River, VA. We primarily used a Before-After-Control-Impact analytical framework to assess potential impacts of a river channelization project on the P. rex population. In this paper, we summarize how our extensive monitoring facilitated the evolution of our (a) conceptual understanding of the ecosystem and fish population dynamics; (b) choices of ecological indicators and analytical tools; and (c) conclusions regarding the magnitude, mechanisms, and significance of observed impacts. Our experience with this case study taught us important lessons about how to adaptively develop and conduct a monitoring program, which we believe are broadly applicable to assessments of environmental impact and restoration success in other rivers. In particular, we learned that (a) pre-treatment planning can enhance monitoring effectiveness, help avoid unforeseen pitfalls, and lead to more robust conclusions; (b) developing adaptable conceptual and analytical models early was crucial to organizing our knowledge, guiding our study design, and analyzing our data; (c) catchment-wide processes that we did not monitor, or initially consider, had profound implications for interpreting our findings; and (d) using multiple analytical frameworks, with varying assumptions, led to clearer interpretation of findings than the use of a single framework alone. Broader integration of these guiding principles into monitoring studies, though potentially challenging, could lead to more scientifically defensible assessments of project effects

    Student Expenditure Patterns

    Get PDF

    Population Viability Analysis for Endangered Roanoke Logperch

    Get PDF
    A common strategy for recovering endangered species is ensuring that populations exceed the minimum viable population size (MVP), a demographic benchmark that theoretically ensures low long-term extinction risk. One method of establishing MVP is population viability analysis, a modeling technique that simulates population trajectories and forecasts extinction risk based on a series of biological, environmental, and management assumptions. Such models also help identify key uncertainties that have a large influence on extinction risk. We used stochastic count-based simulation models to explore extinction risk, MVP, and the possible benefits of alternative management strategies in populations of Roanoke logperch Percina rex, an endangered stream fish. Estimates of extinction risk were sensitive to the assumed population growth rate and model type, carrying capacity, and catastrophe regime (frequency and severity of anthropogenic fish kills), whereas demographic augmentation did little to reduce extinction risk. Under density-dependent growth, the estimated MVP for Roanoke logperch ranged from 200 to 4200 individuals, depending on the assumed severity of catastrophes. Thus, depending on the MVP threshold, anywhere from two to all five of the logperch populations we assessed were projected to be viable. Despite this uncertainty, these results help identify populations with the greatest relative extinction risk, as well as management strategies that might reduce this risk the most, such as increasing carrying capacity and reducing fish kills. Better estimates of population growth parameters and catastrophe regimes would facilitate the refinement of MVP and extinction-risk estimates, and they should be a high priority for future research on Roanoke logperch and other imperiled stream-fish species
    corecore