65 research outputs found

    Validation of the TROPOspheric Monitoring Instrument (TROPOMI) surface UV radiation product

    Get PDF
    The TROPOspheric Monitoring Instrument (TROPOMI) onboard the Sentinel-5 Precursor (S5P) satellite was launched on 13 October 2017 to provide the atmospheric composition for atmosphere and climate research. The S5P is a Sun-synchronous polar-orbiting satellite providing global daily coverage. The TROPOMI swath is 2600 km wide, and the ground resolution for most data products is 7:23:5 km2 (5:63:5 km2 since 6 August 2019) at nadir. The Finnish Meteorological Institute (FMI) is responsible for the development of the TROPOMI UV algorithm and the processing of the TROPOMI surface ultraviolet (UV) radiation product which includes 36 UV parameters in total. Ground-based data from 25 sites located in arctic, subarctic, temperate, equatorial and Antarctic areas were used for validation of the TROPOMI overpass irradiance at 305, 310, 324 and 380 nm, overpass erythemally weighted dose rate/UV index, and erythemally weighted daily dose for the period from 1 January 2018 to 31 August 2019. The validation results showed that for most sites 60 % 80% of TROPOMI data was within 20% of ground-based data for snow-free surface conditions. The median relative differences to ground-based measurements of TROPOMI snow-free surface daily doses were within 10% and 5% at two-Thirds and at half of the sites, respectively. At several sites more than 90% of cloud-free TROPOMI data was within 20% of groundbased measurements. Generally median relative differences between TROPOMI data and ground-based measurements were a little biased towards negative values (i.e. satellite data ground-based measurement), but at high latitudes where non-homogeneous topography and albedo or snow conditions occurred, the negative bias was exceptionally high: from 30% to 65 %. Positive biases of 10 % 15% were also found for mountainous sites due to challenging topography. The TROPOMI surface UV radiation product includes quality flags to detect increased uncertainties in the data due to heterogeneous surface albedo and rough terrain, which can be used to filter the data retrieved under challenging conditions

    Validation of TROPOMI Surface UV Radiation Product

    Get PDF
    The TROPOspheric Monitoring Instrument (TROPOMI) onboard the Sentinel-5 Precursor (S5P) satellite was launched on 13 October 2017 to provide the atmospheric composition for atmosphere and climate research. The S5P is a sun-synchronous polar-orbiting satellite providing global daily coverage. The TROPOMI swath is 2600 km wide, and the ground resolution for most data products is 7.2x3.5 km2 (5.6x3.5 km2 since 6 August 2019) at nadir. The Finnish Meteorological Institute (FMI) is responsible for the development and processing of the TROPOMI Surface Ultraviolet (UV) Radiation Product which includes 36 UV parameters in total. Ground-based data from 25 sites located in arctic, subarctic, temperate, equatorial and antarctic areas were used for validation of TROPOMI overpass irradiance at 305, 310, 324 and 380 nm, overpass erythemally weighted dose rate / UV index and erythemally weighted daily dose for the period from 1 January 2018 to 31 August 2019. The validation results showed that for most sites 60–80% of TROPOMI data was within ±20% from ground-based data for snow free surface conditions. The median relative differences to ground-based measurements of TROPOMI snow free surface daily doses were within ±10% and ±5% at two thirds and at half of the sites, respectively. At several sites more than 90% of clear sky TROPOMI data were within ±20% from ground-based measurements. Generally median relative differences between TROPOMI data and ground-based measurements were a little biased towards negative values, but at high latitudes where nonhomogeneous topography and albedo/snow conditions occurred, the negative bias was exceptionally high, from -30% to -65%. Positive biases of 10–15% were also found for mountainous sites due to challenging topography. The TROPOMI Surface UV Radiation Product includes quality flags to detect increased uncertainties in the data due to heterogeneous surface albedo and rough terrain which can be used to filter the data retrieved under challenging conditions

    Actin Polymerization Controls the Organization of WASH Domains at the Surface of Endosomes

    Get PDF
    Sorting of cargoes in endosomes occurs through their selective enrichment into sorting platforms, where transport intermediates are generated. The WASH complex, which directly binds to lipids, activates the Arp2/3 complex and hence actin polymerization onto such sorting platforms. Here, we analyzed the role of actin polymerization in the physiology of endosomal domains containing WASH using quantitative image analysis. Actin depolymerization is known to enlarge endosomes. Using a novel colocalization method that is insensitive to the heterogeneity of size and shape of endosomes, we further show that preventing the generation of branched actin networks induces endosomal accumulation of the WASH complex. Moreover, we found that actin depolymerization induces a dramatic decrease in the recovery of endosomal WASH after photobleaching. This result suggests a built-in turnover, where the actin network, i.e. the product of the WASH complex, contributes to the dynamic exchange of the WASH complex by promoting its detachment from endosomes. Our experiments also provide evidence for a role of actin polymerization in the lateral compartmentalization of endosomes: several WASH domains exist at the surface of enlarged endosomes, however, the WASH domains coalesce upon actin depolymerization or Arp2/3 depletion. Branched actin networks are thus involved in the regulation of the size of WASH domains. The potential role of this regulation in membrane scission are discussed

    Multiphase Production Control: Application to Slug Flow

    No full text
    TACITE, developed at IFP, is a compositional software able to simulate the behaviour of transient multiphase flow in production pipelines and wells with process equipment such as controllers, valves, separators, lateral injectors, productivity index or bundles. This paper presents first the set of partial differential equations that are solved in this software. Then, the different models (thermodynamic, hydrodynamic, thermal and numerical) are briefly described. Through a field case example, we illustrate that the use of a transient simulator, such TACITE, is essential in the engineering design phase. For instance, it can be used to test control schemes for multiphase production installation. We also illustrate the importance of the compositional approach that has been developed in this code. This example deals with the Dunbar pipeline in which undesirable transient phenomena called severe sluggingcan occur. The simulation results of different production schemes that can prevent severe slugging occuring are presented and their efficiency is analysed

    Neural Networks Tools for Improving Tacite Hydrodynamic Simulation of Multiphase Flow Behavior in Pipelines

    No full text
    Transient multiphase flow simulators are generally used to dimension the production scheme. One of the problems encountered is to predict accurately the pressure drop and the liquid holdup. This can be solved using an accurate numerical scheme and an appropriate thermodynamic behavior linked to an accurate and robust hydrodynamic model. In the Tacite Code, developed by IFP, a mechanistic hydrodynamic model has been developed. This model is able to predict the flow regime, the phase velocities and the local pressure drop for all slopes and all diameters. It contains closure laws based on flow regimes. This mechanistic model has been validated against various data banks. The two limitations of such an hydrodynamic model may be its mathematical disturbance (continuity, derivability are not always guaranteed) and the time consuming. This can be troublesome when using an accurate numerical scheme that requires derivative computation and for real time purposes. This paper presents a neural network based approach to efficiently replace the hydrodynamic module in the two phase model with the following two objectives: - to avoid discontinuity problems during hydrodynamic computations;- to reduce significantly computational time. This method was tested with experimental and simulated data. The results given in this paper prove the relevancy of this approach

    Systematic bioinformatics and experimental validation of yeast complexes reduces the rate of attrition during structural investigations.

    Get PDF
    For high-throughput structural studies of protein complexes of composition inferred from proteomics data, it is crucial that candidate complexes are selected accurately. Herein, we exemplify a procedure that combines a bioinformatics tool for complex selection with in vivo validation, to deliver structural results in a medium-throughout manner. We have selected a set of 20 yeast complexes, which were predicted to be feasible by either an automated bioinformatics algorithm, by manual inspection of primary data, or by literature searches. These complexes were validated with two straightforward and efficient biochemical assays, and heterologous expression technologies of complex components were then used to produce the complexes to assess their feasibility experimentally. Approximately one-half of the selected complexes were useful for structural studies, and we detail one particular success story. Our results underscore the importance of accurate target selection and validation in avoiding transient, unstable, or simply nonexistent complexes from the outset
    • …
    corecore