668 research outputs found
Decisionmaking in practice: The dynamics of muddling through
An alternative to conventional models that treat decisions as open-loop independent choices is presented. The alterative model is based on observations of work situations such as healthcare, where decisionmaking is more typically a closed-loop, dynamic, problem-solving process. The article suggests five important distinctions between the processes assumed by conventional models and the reality of decisionmaking in practice. It is suggested that the logic of abduction in the form of an adaptive,muddling through process is more consistent with the realities of practice in domains such as healthcare.The practical implication is that the design goal should not be to improve consistency with normativemodels of rationality, but to tune the representations guiding the muddling process to increase functional perspicacity
Single Stranded DNA Translocation Through A Nanopore: A Master Equation Approach
We study voltage driven translocation of a single stranded (ss) DNA through a
membrane channel. Our model, based on a master equation (ME) approach,
investigates the probability density function (pdf) of the translocation times,
and shows that it can be either double or mono-peaked, depending on the system
parameters. We show that the most probable translocation time is proportional
to the polymer length, and inversely proportional to the first or second power
of the voltage, depending on the initial conditions. The model recovers
experimental observations on hetro-polymers when using their properties inside
the pore, such as stiffness and polymer-pore interaction.Comment: 7 pages submitted to PR
Evidence-based decision support for pediatric rheumatology reduces diagnostic errors.
BACKGROUND: The number of trained specialists world-wide is insufficient to serve all children with pediatric rheumatologic disorders, even in the countries with robust medical resources. We evaluated the potential of diagnostic decision support software (DDSS) to alleviate this shortage by assessing the ability of such software to improve the diagnostic accuracy of non-specialists.
METHODS: Using vignettes of actual clinical cases, clinician testers generated a differential diagnosis before and after using diagnostic decision support software. The evaluation used the SimulConsult® DDSS tool, based on Bayesian pattern matching with temporal onset of each finding in each disease. The tool covered 5405 diseases (averaging 22 findings per disease). Rheumatology content in the database was developed using both primary references and textbooks. The frequency, timing, age of onset and age of disappearance of findings, as well as their incidence, treatability, and heritability were taken into account in order to guide diagnostic decision making. These capabilities allowed key information such as pertinent negatives and evolution over time to be used in the computations. Efficacy was measured by comparing whether the correct condition was included in the differential diagnosis generated by clinicians before using the software ( unaided ), versus after use of the DDSS ( aided ).
RESULTS: The 26 clinicians demonstrated a significant reduction in diagnostic errors following introduction of the software, from 28% errors while unaided to 15% using decision support (p \u3c 0.0001). Improvement was greatest for emergency medicine physicians (p = 0.013) and clinicians in practice for less than 10 years (p = 0.012). This error reduction occurred despite the fact that testers employed an open book approach to generate their initial lists of potential diagnoses, spending an average of 8.6 min using printed and electronic sources of medical information before using the diagnostic software.
CONCLUSIONS: These findings suggest that decision support can reduce diagnostic errors and improve use of relevant information by generalists. Such assistance could potentially help relieve the shortage of experts in pediatric rheumatology and similarly underserved specialties by improving generalists\u27 ability to evaluate and diagnose patients presenting with musculoskeletal complaints.
TRIAL REGISTRATION: ClinicalTrials.gov ID: NCT02205086
Anomalous Dynamics of Translocation
We study the dynamics of the passage of a polymer through a membrane pore
(translocation), focusing on the scaling properties with the number of monomers
. The natural coordinate for translocation is the number of monomers on one
side of the hole at a given time. Commonly used models which assume Brownian
dynamics for this variable predict a mean (unforced) passage time that
scales as , even in the presence of an entropic barrier. However, the time
it takes for a free polymer to diffuse a distance of the order of its radius by
Rouse dynamics scales with an exponent larger than 2, and this should provide a
lower bound to the translocation time. To resolve this discrepancy, we perform
numerical simulations with Rouse dynamics for both phantom (in space dimensions
and 2), and self-avoiding (in ) chains. The results indicate that
for large , translocation times scale in the same manner as diffusion times,
but with a larger prefactor that depends on the size of the hole. Such scaling
implies anomalous dynamics for the translocation process. In particular, the
fluctuations in the monomer number at the hole are predicted to be
non-diffusive at short times, while the average pulling velocity of the polymer
in the presence of a chemical potential difference is predicted to depend on
.Comment: 9 pages, 9 figures. Submitted to Physical Review
Anomalous Dynamics of Forced Translocation
We consider the passage of long polymers of length N through a hole in a
membrane. If the process is slow, it is in principle possible to focus on the
dynamics of the number of monomers s on one side of the membrane, assuming that
the two segments are in equilibrium. The dynamics of s(t) in such a limit would
be diffusive, with a mean translocation time scaling as N^2 in the absence of a
force, and proportional to N when a force is applied. We demonstrate that the
assumption of equilibrium must break down for sufficiently long polymers (more
easily when forced), and provide lower bounds for the translocation time by
comparison to unimpeded motion of the polymer. These lower bounds exceed the
time scales calculated on the basis of equilibrium, and point to anomalous
(sub-diffusive) character of translocation dynamics. This is explicitly
verified by numerical simulations of the unforced translocation of a
self-avoiding polymer. Forced translocation times are shown to strongly depend
on the method by which the force is applied. In particular, pulling the polymer
by the end leads to much longer times than when a chemical potential difference
is applied across the membrane. The bounds in these cases grow as N^2 and
N^{1+\nu}, respectively, where \nu is the exponent that relates the scaling of
the radius of gyration to N. Our simulations demonstrate that the actual
translocation times scale in the same manner as the bounds, although influenced
by strong finite size effects which persist even for the longest polymers that
we considered (N=512).Comment: 13 pages, RevTeX4, 16 eps figure
The impacts of environmental warming on Odonata: a review
Climate change brings with it unprecedented rates of increase in environmental temperature, which will have major consequences for the earth's flora and fauna. The Odonata represent a taxon that has many strong links to this abiotic factor due to its tropical evolutionary history and adaptations to temperate climates. Temperature is known to affect odonate physiology including life-history traits such as developmental rate, phenology and seasonal regulation as well as immune function and the production of pigment for thermoregulation. A range of behaviours are likely to be affected which will, in turn, influence other parts of the aquatic ecosystem, primarily through trophic interactions. Temperature may influence changes in geographical distributions, through a shifting of species' fundamental niches, changes in the distribution of suitable habitat and variation in the dispersal ability of species. Finally, such a rapid change in the environment results in a strong selective pressure towards adaptation to cope and the inevitable loss of some populations and, potentially, species. Where data are lacking for odonates, studies on other invertebrate groups will be considered. Finally, directions for research are suggested, particularly laboratory studies that investigate underlying causes of climate-driven macroecological patterns
Theory and simulation of quantum photovoltaic devices based on the non-equilibrium Green's function formalism
This article reviews the application of the non-equilibrium Green's function
formalism to the simulation of novel photovoltaic devices utilizing quantum
confinement effects in low dimensional absorber structures. It covers
well-known aspects of the fundamental NEGF theory for a system of interacting
electrons, photons and phonons with relevance for the simulation of
optoelectronic devices and introduces at the same time new approaches to the
theoretical description of the elementary processes of photovoltaic device
operation, such as photogeneration via coherent excitonic absorption,
phonon-mediated indirect optical transitions or non-radiative recombination via
defect states. While the description of the theoretical framework is kept as
general as possible, two specific prototypical quantum photovoltaic devices, a
single quantum well photodiode and a silicon-oxide based superlattice absorber,
are used to illustrated the kind of unique insight that numerical simulations
based on the theory are able to provide.Comment: 20 pages, 10 figures; invited review pape
Spatial heterogeneity and peptide availability determine CTL killing efficiency in vivo
The rate at which a cytotoxic T lymphocyte (CTL) can survey for infected cells is a key ingredient of models of vertebrate immune responses to intracellular pathogens. Estimates have been obtained using in vivo cytotoxicity assays in which peptide-pulsed splenocytes are killed by CTL in the spleens of immunised mice. However the spleen is a heterogeneous environment and splenocytes comprise multiple cell types. Are some cell types intrinsically more susceptible to lysis than others? Quantitatively, what impacts are made by the spatial distribution of targets and effectors, and the level of peptide-MHC on the target cell surface? To address these questions we revisited the splenocyte killing assay, using CTL specific for an epitope of influenza virus. We found that at the cell population level T cell targets were killed more rapidly than B cells. Using modeling, quantitative imaging and in vitro killing assays we conclude that this difference in vivo likely reflects different migratory patterns of targets within the spleen and a heterogeneous distribution of CTL, with no detectable difference in the intrinsic susceptibilities of the two populations to lysis. Modeling of the stages involved in the detection and killing of peptide-pulsed targets in vitro revealed that peptide dose influenced the ability of CTL to form conjugates with targets but had no detectable effect on the probability that conjugation resulted in lysis, and that T cell targets took longer to lyse than B cells. We also infer that incomplete killing in vivo of cells pulsed with low doses of peptide may be due to a combination of heterogeneity in peptide uptake and the dissociation, but not internalisation, of peptide-MHC complexes. Our analyses demonstrate how population-averaged parameters in models of immune responses can be dissected to account for both spatial and cellular heterogeneity
Intimacy for older adults in long-term care: a need, a right, a privilege-or a kind of care?
No commercial re-use. See rights and permissions. Published by BMJPublishe
- …
