28 research outputs found
Bovine tuberculosis disturbs parasite functional trait composition in African buffalo
Novel parasites can have wide-ranging impacts, not only on host populations, but also on the resident parasite community. Historically, impacts of novel parasites have been assessed by examining pairwise interactions between parasite species. However, parasite communities are complex networks of interacting species. Here we used multivariate taxonomic and trait-based approaches to determine how parasite community composition changed when African buffalo (Syncerus caffer) acquired an emerging disease, bovine tuberculosis (BTB). Both taxonomic and functional parasite richness increased significantly in animals that acquired BTB than in those that did not. Thus, the presence of BTB seems to catalyze extraordinary shifts in community composition. There were no differences in overall parasite taxonomic composition between infected and uninfected individuals, however. The trait-based analysis revealed an increase in direct-transmitted, quickly replicating parasites following BTB infection. This study demonstrates that trait-based approaches provide insight into parasite community dynamics in the context of emerging infections
An intraoperative telemedicine program to improve perioperative quality measures: The ACTFAST-3 randomized clinical trial
IMPORTANCE: Telemedicine for clinical decision support has been adopted in many health care settings, but its utility in improving intraoperative care has not been assessed.
OBJECTIVE: To pilot the implementation of a real-time intraoperative telemedicine decision support program and evaluate whether it reduces postoperative hypothermia and hyperglycemia as well as other quality of care measures.
DESIGN, SETTING, AND PARTICIPANTS: This single-center pilot randomized clinical trial (Anesthesiology Control Tower-Feedback Alerts to Supplement Treatments [ACTFAST-3]) was conducted from April 3, 2017, to June 30, 2019, at a large academic medical center in the US. A total of 26 254 adult surgical patients were randomized to receive either usual intraoperative care (control group; nâ=â12 980) or usual care augmented by telemedicine decision support (intervention group; nâ=â13 274). Data were initially analyzed from April 22 to May 19, 2021, with updates in November 2022 and February 2023.
INTERVENTION: Patients received either usual care (medical direction from the anesthesia care team) or intraoperative anesthesia care monitored and augmented by decision support from the Anesthesiology Control Tower (ACT), a real-time, live telemedicine intervention. The ACT incorporated remote monitoring of operating rooms by a team of anesthesia clinicians with customized analysis software. The ACT reviewed alerts and electronic health record data to inform recommendations to operating room clinicians.
MAIN OUTCOMES AND MEASURES: The primary outcomes were avoidance of postoperative hypothermia (defined as the proportion of patients with a final recorded intraoperative core temperature \u3e36 °C) and hyperglycemia (defined as the proportion of patients with diabetes who had a blood glucose level â€180 mg/dL on arrival to the postanesthesia recovery area). Secondary outcomes included intraoperative hypotension, temperature monitoring, timely antibiotic redosing, intraoperative glucose evaluation and management, neuromuscular blockade documentation, ventilator management, and volatile anesthetic overuse.
RESULTS: Among 26 254 participants, 13 393 (51.0%) were female and 20 169 (76.8%) were White, with a median (IQR) age of 60 (47-69) years. There was no treatment effect on avoidance of hyperglycemia (7445 of 8676 patients [85.8%] in the intervention group vs 7559 of 8815 [85.8%] in the control group; rate ratio [RR], 1.00; 95% CI, 0.99-1.01) or hypothermia (7602 of 11 447 patients [66.4%] in the intervention group vs 7783 of 11 672 [66.7.%] in the control group; RR, 1.00; 95% CI, 0.97-1.02). Intraoperative glucose measurement was more common among patients with diabetes in the intervention group (RR,â1.07; 95% CI, 1.01-1.15), but other secondary outcomes were not significantly different.
CONCLUSIONS AND RELEVANCE: In this randomized clinical trial, anesthesia care quality measures did not differ between groups, with high confidence in the findings. These results suggest that the intervention did not affect the targeted care practices. Further streamlining of clinical decision support and workflows may help the intraoperative telemedicine program achieve improvement in targeted clinical measures.
TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT02830126
The next generation neutrino telescope: IceCube-Gen2
The IceCube Neutrino Observatory, a cubic-kilometer-scale neutrino detector at the geographic South Pole, has reached a number of milestones in the field of neutrino astrophysics: the discovery of a high-energy astrophysical neutrino flux, the temporal and directional correlation of neutrinos with a flaring blazar, and a steady emission of neutrinos from the direction of an active galaxy of a Seyfert II type and the Milky Way. The next generation neutrino telescope, IceCube-Gen2, currently under development, will consist of three essential components: an array of about 10,000 optical sensors, embedded within approximately 8 cubic kilometers of ice, for detecting neutrinos with energies of TeV and above, with a sensitivity five times greater than that of IceCube; a surface array with scintillation panels and radio antennas targeting air showers; and buried radio antennas distributed over an area of more than 400 square kilometers to significantly enhance the sensitivity of detecting neutrino sources beyond EeV. This contribution describes the design and status of IceCube-Gen2 and discusses the expected sensitivity from the simulations of the optical, surface, and radio components
Sensitivity of IceCube-Gen2 to measure flavor composition of Astrophysical neutrinos
The observation of an astrophysical neutrino flux in IceCube and its detection capability to separate between the different neutrino flavors has led IceCube to constraint the flavor content of this flux. IceCube-Gen2 is the planned extension of the current IceCube detector, which will be about 8 times larger than the current instrumented volume. In this work, we study the sensitivity of IceCube-Gen2 to the astrophysical neutrino flavor composition and investigate its tau neutrino identification capabilities. We apply the IceCube analysis on a simulated IceCube-Gen2 dataset that mimics the High Energy Starting Event (HESE) classification. Reconstructions are performed using sensors that have 3 times higher quantum efficiency and isotropic angular acceptance compared to the current IceCube optical modules. We present the projected sensitivity for 10 years of data on constraining the flavor ratio of the astrophysical neutrino flux at Earth by IceCube-Gen2
Mechanical design of the optical modules intended for IceCube-Gen2
IceCube-Gen2 is an expansion of the IceCube neutrino observatory at the South Pole that aims to increase the sensitivity to high-energy neutrinos by an order of magnitude. To this end, about 10,000 new optical modules will be installed, instrumenting a fiducial volume of about 8 km3. Two newly developed optical module types increase IceCubeâs current sensitivity per module by a factor of three by integrating 16 and 18 newly developed four-inch PMTs in specially designed 12.5-inch diameter pressure vessels. Both designs use conical silicone gel pads to optically couple the PMTs to the pressure vessel to increase photon collection efficiency. The outside portion of gel pads are pre-cast onto each PMT prior to integration, while the interiors are filled and cast after the PMT assemblies are installed in the pressure vessel via a pushing mechanism. This paper presents both the mechanical design, as well as the performance of prototype modules at high pressure (70 MPa) and low temperature (â40âC), characteristic of the environment inside the South Pole ice
Direction reconstruction performance for IceCube-Gen2 Radio
The IceCube-Gen2 facility will extend the energy range of IceCube to ultra-high energies. The key component to detect neutrinos with energies above 10 PeV is a large array of in-ice radio detectors. In previous work, direction reconstruction algorithms using the forward-folding technique have been developed for both shallow (âČ20 m) and deep in-ice detectors, and have also been successfully used to reconstruct cosmic rays with ARIANNA. Here, we focus on the reconstruction algorithm for the deep in-ice detector, which was recently introduced in the context of the Radio Neutrino Observatory in Greenland (RNO-G)
Deep Learning Based Event Reconstruction for the IceCube-Gen2 Radio Detector
The planned in-ice radio array of IceCube-Gen2 at the South Pole will provide unprecedented sensitivity to ultra-high-energy (UHE) neutrinos in the EeV range. The ability of the detector to measure the neutrinoâs energy and direction is of crucial importance. This contribution presents an end-to-end reconstruction of both of these quantities for both detector components of the hybrid radio array (\u27shallow\u27 and \u27deep\u27) using deep neural networks (DNNs). We are able to predict the neutrino\u27s direction and energy precisely for all event topologies, including the electron neutrino charged-current (Îœe-CC) interactions, which are more complex due to the LPM effect. This highlights the advantages of DNNs for modeling the complex correlations in radio detector data, thereby enabling a measurement of the neutrino energy and direction. We discuss how we can use normalizing flows to predict the PDF for each individual event which allows modeling the complex non-Gaussian uncertainty contours of the reconstructed neutrino direction. Finally, we discuss how this work can be used to further optimize the detector layout to improve its reconstruction performance
Estimating the coincidence rate between the optical and radio array of IceCube-Gen2
The IceCube-Gen2 Neutrino Observatory is proposed to extend the all-flavour energy range of IceCube beyond PeV energies. It will comprise two key components: I) An enlarged 8km3 in-ice optical Cherenkov array to measure the continuation of the IceCube astrophysical neutrino flux and improve IceCube\u27s point source sensitivity above âŒ100TeV; and II) A very large in-ice radio array with a surface area of about 500km2. Radio waves propagate through ice with a kilometer-long attenuation length, hence a sparse radio array allows us to instrument a huge volume of ice to achieve a sufficient sensitivity to detect neutrinos with energies above tens of PeV.
The different signal topologies for neutrino-induced events measured by the optical and in-ice radio detector - the radio detector is mostly sensitive to the cascades produced in the neutrino interaction, while the optical detector can detect long-ranging muon and tau leptons with high accuracy - yield highly complementary information. When detected in coincidence, these signals will allow us to reconstruct the neutrino energy and arrival direction with high fidelity. Furthermore, if events are detected in coincidence with a sufficient rate, they resemble the unique opportunity to study systematic uncertainties and to cross-calibrate both detector components