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Significance Statement: 

Similar to abiotic disturbances like fires, floods, and droughts, emerging infectious diseases 

(EID’s) act as key disturbances that can have cascading effects on native parasite communities 

within hosts.  Here, we investigate an EID of great concern for wildlife and human health: 



bovine tuberculosis (BTB) in African buffalo.  Our application of a functional diversity 

framework to examine trends in parasite composition before and after acquisition of BTB 

revealed traits of parasites that BTB is most likely to affect.  Yet, BTB is only one example of an 

EID and our novel framework can be applied to other EID’s providing us with a novel method to 

evaluate their impacts and design mitigation strategies that acknowledge the complex parasite 

communities that exist worldwide.   
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Abstract 1 

Novel parasites can have wide-ranging impacts, not only on host populations, but also on the 2 

resident parasite community. Historically, impacts of novel parasites have been assessed by 3 

examining pairwise interactions between parasite species. However, parasite communities are 4 

complex networks of interacting species. Here, we used multivariate taxonomic and trait-based 5 

approaches to determine how parasite community composition changed when African buffalo 6 

(Syncerus caffer) acquired an emerging disease, bovine tuberculosis (BTB). Both taxonomic and 7 

functional parasite richness increased significantly in animals that acquired BTB than in those 8 

that did not. Thus, the presence of BTB seems to catalyze extraordinary shifts in community 9 

composition. There were, however, no differences in overall parasite taxonomic composition 10 

between infected and uninfected individuals. The trait-based analysis revealed that direct-11 

transmitted, quickly replicating parasites increased following BTB infection. This study 12 

demonstrates that trait-based approaches provide novel insight for understanding parasite 13 

community dynamics in the context of emerging infections.  14 

  15 



Introduction 16 

Wild hosts are infected with multiple parasites simultaneously(1–3). These species interact 17 

directly and indirectly, and basic principles of community ecology apply to parasite assemblages 18 

(4). Numerous studies have attempted to characterize the mechanisms and consequences of co-19 

infection (reviewed in (2, 5, 6)). However, it can be difficult to predict the direction and strength 20 

of the outcomes (7) because parasite interactions can be both competitive (e.g. (8)) and 21 

facilitative (e.g. (9, 10)) and the relative importance of these mechanisms varies. Investigators 22 

have begun to apply community ecological principles to the field of disease ecology to 23 

understand parasite interactions within a host (11–16) although most studies still break existing 24 

networks of parasites into isolated pairwise comparisons (e.g. (17–23) that may fail to capture 25 

the true dynamics of co-infection.  26 

Emerging infectious diseases act as ecological disturbances that can alter the structure of 27 

entire parasite communities (24), yet the impacts of emerging infections on the structure of the 28 

native parasite community are rarely explored (except see (18)). Disturbance ecology approaches 29 

that consider shifts in multivariate community composition have highlighted community 30 

responses to disturbance in terrestrial (e.g., (25)), marine (e.g., (26)), and freshwater (e.g., (27, 31 

28)) communities of free-living organisms, and are increasingly used to understand the 32 

consequences of invasive species on native biodiversity (29, 30). Disturbance ecology may thus 33 

prove useful to predict the consequences of increasingly common emerging infections (11, 12) 34 

on native parasite communities.  35 

Furthermore, disturbance ecology has the toolset to approach multi-parasite systems from 36 

not only taxonomic (species identity), but also functional (trait) perspectives by examining how 37 

functional traits of entire communities change with disturbance (31, 32). When analyses are 38 



limited to the taxonomic level, it is difficult to extrapolate beyond the specific parasite species 39 

under study. Shifting the focus in disease ecology from taxon-based to trait-based approaches 40 

can help us understand the mechanisms behind observed patterns in parasite community 41 

composition and parasite transmission - a priority that has been emphasized in review papers (12, 42 

24, 33), and is necessary to understand how host communities (34) and vector communities (35) 43 

play a role in disease transmission.  44 

 Trait-based disturbance ecology thus has the potential to reveal the collective impacts of 45 

the arrival of a novel parasite across entire parasite communities. Specifically, multivariate 46 

ordination-based approaches that visualize the trait composition of communities (36–38) and 47 

track how these communities change with disturbance (31, 32) provide an intuitive, rigorous, and 48 

flexible approach that can advance our understanding of the consequences of novel parasite 49 

invasions. Applying such an approach to co-infection questions may increase our capacity to 50 

understand the community-wide impacts of invading parasites by identifying which native trait 51 

combinations change with the arrival of the invaders.  52 

In this study, we apply the principles of trait-based disturbance ecology to understand how 53 

the arrival of a novel parasite affects taxonomic and functional community structure of a native 54 

parasite community. We studied the effects of a well-characterized emerging, chronic parasitic 55 

disease, bovine tuberculosis (BTB) (18, 39–42), on a community of 16 parasites in wild African 56 

buffalo (Syncerus caffer). We focus on BTB because is known to have dramatic effects on 57 

immune function (18, 43, 44) and body condition (i.e. wasting) (20, 42, 43); both are attributes 58 

that might permit the parasite to serve a “keystone” role, allowing us to evaluate how one 59 

parasite can restructure the rest of the parasite community.  We developed a trait database for a 60 

diverse parasite community comprised of viruses, bacteria, protozoa, and helminths, and applied 61 



taxonomic and trait-based approaches to analyze how parasite richness and community 62 

composition changed in response to BTB infection. The unique longitudinal format of the data, 63 

which involved sampling the parasite community in the same hosts over multiple years, allowed 64 

us to implement a framework developed to understand the effects of disturbances on functional 65 

trait diversity in multispecies communities (31, 32).  66 

We hypothesized that BTB infection would have contrasting effects on the parasite 67 

community. We predicted BTB to increase the occurrence of parasites when the dominant 68 

mechanism of interaction was enhanced susceptibility due to wasting and immune modulation  69 

(18) and decrease occurrence of parasites when the dominant mechanism of interaction was co-70 

infected mortality due to wasting (20, 21). Because of the opposing direction of these 71 

hypotheses, predicting the overall effect of BTB on parasite community richness and structure is 72 

challenging. Thus, we used a case-control design to compare changes in parasite community in a 73 

group of buffalo that acquired BTB, to changes in a control group that was matched in terms of 74 

age, herd, and time period but did not acquire BTB. 75 

Materials and Methods 76 

Study System & Parasite Diagnostics: Approximately 200 African buffalo were captured in 77 

Kruger National Park (KNP), South Africa, as part of a longitudinal study on gastrointestinal 78 

helminths and bovine tuberculosis which targeted young females (20). Individuals were followed 79 

for 4 years (or until they left the study due to death or emigration from the study area), and 80 

captured every 6 months, resulting in 1751 sample events. At each capture, blood and fecal 81 

samples were obtained for parasite diagnostics. Blood was collected by jugular venipuncture into 82 

lithium heparinized tubes and no-additive tubes. Feces was collected from the rectum using a 83 

gloved hand. Both blood and feces were placed on ice and transported back to the lab for 84 



processing within 8 hours of collection. Once in the laboratory, serum was obtained by 85 

centrifugation of the no-additive blood samples, and serum was then stored at -20°C. Whole 86 

blood was frozen at -20°C until DNA was extracted for blood parasite detection (23). Feces was 87 

processed on the same day of collection for gastrointestinal parasite detection (45). 88 

Bovine tuberculosis (BTB) was diagnosed using a standard blood test (bovigam) that 89 

evaluates the amount of interferon gamma produced in whole blood after stimulation with 90 

tuberculosis antigens; this assay has been optimized for use in African buffalo (46). We 91 

determined the date of conversion from BTB-negative to BTB-positive for all individuals in this 92 

study using the protocol described in (20). We tested for the presence of 15 other parasites 93 

including 5 viruses, 6 bacteria, 2 protozoa, 1 nematode and 1 trematode with diagnostics 94 

available for African buffalo. There are numerous parasites in the system we are unable to detect, 95 

but these 16 represent the most common parasites that have been described in buffalo  and for 96 

which detection is possible. The parasites are bovine herpes virus 1 (BHV), parainfluenza virus 3 97 

(PI), adenvovirus 3 (Ad3), bovine viral diarrhea virus (BVDV), bovine respiratory syncytial 98 

virus (BRSV), Brucella abortus (Br), Mannheimia haemolytica (MH),  Mycoplasma bovis (MB), 99 

Anaplasma centrale (AC), Anaplasma marginale (AM), Anaplasma omatajenne (AO), Theileria 100 

parva (TP), coccidia, Schistosoma matthei (SM) and strongyle nematodes (strongyles).  While 101 

the tick borne parasites (Theileria parva, Anaplasma spp.) (23), Coccidia, nematodes and flukes 102 

(22, 47, 48) were diagnosed by presence of the parasite itself, the remainder of the parasites were 103 

considered present when a buffalo’s antibody status went from negative to positive between two 104 

captures (49). Because buffalo are not known to clear Brucella abortus (50) or BVDV (51, 52), 105 

once an animal seroconverted it was considered positive for the rest of the study. The viral 106 



parasites are infections with shorter duration of clinical signs and buffalo are able to recover so 107 

multiple seroconversions were allowed per individual (PI3, Ad3, MH, BRSV, BHV). 108 

Animal Selection for Inclusion:  109 

We only included individuals that were captured at least two times prior to BTB conversion 110 

(Phase 1) and two times post BTB conversion (Phase 2), resulting in 29 individuals that were 111 

included as BTB converters. We then selected 29 'control' animals that did not acquire BTB 112 

during the study period that were matched with BTB animals for age (within 1 year), 113 

reproductive status (pregnant vs. not in the same phase) and capture date (+/- 2 months). Control 114 

animals (buffalo that never acquired BTB) were assigned the same “conversion” date as their 115 

paired BTB+ individual to divide captures into Phase 1 and Phase 2 – this kept the total samples 116 

the same for BTB+ and control animals in Phase 1 and 2 and facilitated comparison. This 117 

allowed us to account for potential changes through time that were not associated with the 118 

acquisition of BTB. In association with another study, eight animals in each group (BTB+ and 119 

control) had an anthelmintic treatment (long-acting fenbendazole bolus) applied every six 120 

months for the duration of the study to reduce strongyle burdens (20).  121 

Importantly, we conducted a supplemental analysis and demonstrated that the bolus did 122 

not affect parasite taxonomic or functional composition in our analysis. To verify that the bolus 123 

(anthelmintic) did not change the parasite assemblage in our study, we compared 48 bolused 124 

animals, measured prior to bolusing in June–July 2008 to the same 48 bolused animals measured 125 

1 year later between June and August 2009. We found no differences in functional diversity 126 

(Wilcoxon matched pairs signed rank, median difference 0.002, p=0.253), functional richness 127 

(Wilcoxon matched pairs signed rank, median difference 0.008, p=0.730), or taxonomic diversity 128 

(Wilcoxon matched pairs signed rank, median difference 0.05, p=0.255). This is likely because 129 



the bolus reduces strongyle burden, but does not clear it entirely. Consequently, we included the 130 

presence of strongyles as a parasite in our analyses.   131 

Creation of the Parasite Matrix 132 

The parasite matrix contained data on the parasites present in each buffalo at each capture. All 133 

individuals were assigned a 1 if they were positive for BTB and a 0 if negative at each capture. 134 

We then calculated the proportion of time each parasite species was present in the buffalo before 135 

and after BTB (Phase 1 and 2 respectively). If the parasite was tested for directly (such as A. 136 

marginale (SI Appendix), we determined the proportion of captures during which the parasite 137 

was present in each phase. For instance, if Animal 1 was captured at 8 time periods, periods 1-4 138 

in Phase 1 and periods 5-8 in Phase 2, and it had A. marginale (AM) at time points 1,6 and 7, 139 

then the proportion of capture intervals it had AM for Phase 1 was 1/4 and Phase 2 was 2/4. If 140 

the parasite was detected with antibody seroconversion (such as PI3), then we calculated 141 

incidence of each parasite between successive captures, which was defined as a change in 142 

antibody titer from negative to positive in successive captures (BRSV, BVDV) or an increase in 143 

antibody titer greater than a certain percentage (as described by the manufacturer of the ELISA 144 

and in Glidden et al (49) (MH, MB, PI3, Ad3, BHV)). Incidence was then used to calculate the 145 

proportion of capture intervals during which an incident event occurred. More details on 146 

incidence calculation are described in Glidden et al (49). 147 

Creation of the Trait Matrix 148 

We created a categorical trait matrix based on nine traits of parasites that may influence 149 

transmission (e.g., (53, 54)) (Table 1, SI Appendix Table S1). Collectively, these traits 150 

represented basic aspects of parasite biology that are necessary to characterize the parasite 151 

community. We selected a broad suite of traits to understand which of the parasite traits likely to 152 



be affected by the invasion of bovine tuberculosis; while also focusing on traits that may help us 153 

disentangle the effects that BTB may have due to wasting/co-mortality and increased 154 

susceptibility due to BTB infection.  155 

Statistical Analysis 156 

To evaluate whether our trait set appropriately captured representative aspects of parasite 157 

biology, we first examined how parasites varied in their trait composition with a nonmetric 158 

multidimensional scaling (NMDS) ordination of parasites in trait space (SI Appendix, Figure 159 

S1). We calculated Gower dissimilarity from the categorical trait matrix and applied a Wisconsin 160 

transformation to standardize before ordination. The ordination converged on a stable two-161 

dimensional solution (SI Appendix, Figure S1). Relationships among parasites matched 162 

expectations from the literature. For instance, the intestinal parasites and tick-borne parasites 163 

each clustered separately in multivariate space. The congruence between expectations and trait 164 

space validated our trait selection and assignment. 165 

To examine the effects of BTB on parasite taxonomic and functional richness, we 166 

calculated two univariate diversity metrics, functional richness (FRic; (38)) and taxonomic 167 

richness, for each buffalo in Phases 1 and 2. For categorical traits, FRic measures the number of 168 

independent trait combinations and is directly comparable with species richness. We used 169 

repeated measures ANOVAs with Bonferroni correction to compare richness between all groups 170 

(Phase 1 BTB vs Phase 1 control; Phase 2 BTB vs Phase 2 control; Phase 1 vs Phase 2 control; 171 

Phase 1 vs Phase 2 BTB). To assess which species of parasite changed with BTB infection, i.e. 172 

were representative of each host group, we used an indicator species analysis (ISA, multipatt in 173 

R package indicspecies) and examined statistical significance using a Monte Carlo 174 

randomization with 999 iterations (55). ISA combines information on the relative abundances 175 



and relative frequencies of species to determine an indicator value that represents the fidelity and 176 

exclusivity of each parasite species to each of the four host groups: Phase 1 control, Phase 1 177 

BTB, Phase 2 control, and Phase 2 BTB.  178 

To examine the effects of BTB on parasite taxonomic and functional composition, we 179 

visualized changes in the taxonomic and trait composition of each buffalo between Phases 1 and 180 

2 using NMDS. We plotted each individual’s taxonomic/functional parasite composition in 181 

Phase 1 and Phase 2 (as in (32)). Examining shifts in the location of ordination space allowed us 182 

to understand how taxonomic and trait composition of individual buffalo changed when they 183 

acquired BTB. We then compared these changes with similar shifts in control buffalo during the 184 

same time period (Phase 1 to Phase 2).  185 

For taxonomic ordinations, we used Bray-Curtis distances and applied Wisconsin 186 

transformations before ordination. We assessed ordination fit with overall stress; both taxonomic 187 

ordinations converged on stable three-dimensional solutions. To aid in interpreting the 188 

ordinations, we examined parasite correlations with the first two axes (r > 0.5). We used 189 

permutation-based analysis of variance (PerMANOVA; (56)) to examine changes in the location 190 

of buffalo in parasite taxonomic ordination space between Phases 1 and 2. We also compared the 191 

multivariate dispersion of parasite associated with Phase 1 and Phase 2 buffalo using 192 

homogeneity of group dispersions and permutation tests(57). Dispersion is the average distance 193 

of each point from the multivariate group centroid and is a way to quantify the amount of 194 

multivariate space that is occupied by a given community.  195 

For functional trait ordinations, we first converted the categorical trait matrix to a binary 196 

traits matrix (58) and then multiplied the control and BTB+ parasite matrices 197 

(individual*parasite) by the binary traits matrix (parasite*trait) to create individual*trait matrices 198 



(58, 59), which we then ordinated using NMDS. Prior to ordination, we calculated Gower 199 

distances and applied log and Wisconsin transformations. Functional ordinations converged on 200 

stable two-dimensional solutions. We rotated each ordination to align with a vector of strongyle 201 

abundance to facilitate comparisons between ordinations (58), and because strongyles, a native 202 

parasite, are known to affect the survival of animals with BTB(20). We examined trait 203 

correlations with the axes (r > 0.5). As with taxonomic composition, we tested for shifts in the 204 

location of Phase 1 and Phase 2 animals in trait space with PerMANOVA, and homogeneity of 205 

group dispersions of functional traits using permutation tests. 206 

We also calculated multivariate dispersion (betadisper in R package vegan) to examine 207 

differences in the dispersion of buffalo in taxonomic and functional space (57, 60). We 208 

conducted all analyses in R version 0.98.1062 using packages FD (25), vegan (61), and 209 

indicspecies (62). 210 

Results 211 

 (1) How did taxonomic and functional richness of parasite assemblages change over time in 212 

animals that acquired BTB versus those that did not? Animals that acquired BTB experienced a 213 

greater increase in parasite assemblage richness than control animals. Taxonomic richness in 214 

BTB-infected animals increased by 3.3 species on average between Phase 1 and Phase 2, 215 

compared to an increase of 1.1 species in control animals (Figure 1; Table 2). Parasite functional 216 

richness (the number of unique trait combinations) was over three times greater in BTB-infected 217 

animals than in control animals (Figure 1; Table 2). Although we created our control group by 218 

matching buffalo by age, herd, and observation period, we detected small differences in initial 219 

taxonomic and functional richness of the parasite assemblages in our BTB and control groups. 220 



Animals that acquired BTB had slightly lower parasite richness prior to BTB conversion than 221 

control animals (Table 2; Figure 1).  222 

We also found that indicator species differed by both BTB status and phase. Schistosomes 223 

were a significant indicator of both control and BTB buffalo in Phase 2 (p = 0.006), suggesting 224 

that buffalo acquired schistosomes regardless of BTB status, which is likely due to schistosome 225 

acquisition as buffalo age (48). BHV and BRSV were indicators of control buffalo in both phases 226 

and of BTB buffalo during Phase 2 (BHV: p = 0.012, BRSV: p = 0.048). However, these viral 227 

parasites were not indicators for BTB buffalo in Phase 1, which suggests that they may be 228 

associated with TB acquisition in this group. 229 

(2) How did taxonomic and functional composition change over time in animals that acquired 230 

BTB versus those that did not? BTB-infected animals occupied different locations in taxonomic 231 

space after infection with BTB than before infection (PerMANOVA: df = 1, F = 7.75, p =0.001), 232 

and a similar change also occurred for control animals during the same time period 233 

(PerMANOVA: df = 1, F = 3.83, p = 0.001; Figure 2b; Table 2). These shifts represented 234 

changes in taxonomic composition that were associated with the loss of strongyle nematodes and 235 

A. marginale and the gain of Brucella abortus and schistosomes (Figure 2a; SI Appendix Table 236 

S2) for animals with BTB, and the loss of BHV and PI3 and a gain of Brucella abortus and 237 

nematodes for control animals (Figure 2b; SI Appendix Table S2). Despite these changes in 238 

parasite assemblage composition, the dispersion of parasite species did not differ between Phases 239 

1 and 2 for either BTB+ or control animals (Control: df = 1, F = 1.35, p = 0.28; BTB: df = 1, F = 240 

1.05, p = 0.31), meaning that there was no contraction or expansion of multivariate taxonomic 241 

space through time.  242 



Both control and BTB-infected animals occupied different regions of trait ordination space 243 

between Phases 1 and 2 (PerMANOVA: BTB: df=1, F=5.69, P= 0.001; Control: df=1, F=5.57, p 244 

= 0.001), as in the taxonomic analysis, reflecting changes in functional trait composition for all 245 

animals regardless of BTB status (Figure 2c, 2d). However, contrary to the taxonomic analysis, 246 

the dispersion of functional traits contracted through time in both control and BTB-infected 247 

buffalo (Control: df = 1, F = 4.29, p = 0.047; BTB: df = 1, F = 9.80, p = 0.003). Interestingly, the 248 

magnitude of this contraction was almost double in BTB animals compared to control animals 249 

(difference in distance to centroid between Phase 1 and Phase 2: Control = 0.027, BTB = 0.047). 250 

The contraction in trait space for the BTB+ group was primarily associated with an increase in 251 

contact-transmitted parasites with simple life cycles and fast replication times; the control group 252 

contraction was not associated with any trait groups (Table SI Appendix S3; r>0.7). Notably, no 253 

functional groups were lost entirely with the acquisition of BTB.  254 

Discussion 255 

BTB infection changed the taxonomic and trait composition of parasites in African buffalo. 256 

Individual buffalo harbored different parasites after BTB infection than they did prior to 257 

infection, as evidenced by an increase in taxonomic richness and shifts in taxonomic 258 

composition. Furthermore, our analysis of functional traits highlighted that BTB fosters an 259 

increase in parasites with specific trait patterns (i.e. fast replication, contact transmitted) after 260 

BTB infection. Understanding changes in this context may allow us to predict how an invasive 261 

disease, like BTB, may alter native parasite communities and better create disease control 262 

programs that consider the context of the parasites into which the emerging disease enters. 263 

When we evaluated how the trait assemblage changed with BTB infection, we found that 264 

functional richness increased, indicating that parasites with trait combinations different from 265 



those already present in the parasite community were able to establish following BTB infection. 266 

However, ordination and multivariate dispersion both showed that parasites occupied a smaller 267 

region of trait space and had lower dispersion after the acquisition of BTB than before. This 268 

pattern suggests that, while  buffalo carried different parasite species post-BTB infection, the 269 

traits that these species possessed were functionally similar to existing ones, which caused them 270 

to cluster in trait space. This pattern is consistent with the idea that BTB alters host susceptibility 271 

to parasites with particular suites of traits. Furthermore, our functional composition analysis 272 

suggests that BTB shifted the parasite trait community towards contact-transmitted, simple life 273 

cycle and fast replicating parasites, revealing a specific profile of pathogens that may be 274 

facilitated by BTB.  275 

Importantly, the changes to the parasite community in BTB-positive animals differed from 276 

those seen in control animals. There were marginally significant increases in taxonomic and 277 

functional richness through time in control animals, but the magnitudes of these increases were 278 

2x less than in BTB-positive animals. Additionally, there were no differences in the dispersion of 279 

Phase 1 and Phase 2 control buffalo in taxonomic space, suggesting that the parasite community 280 

neither converged nor diverged over time. Control buffalo also shifted locations in the functional 281 

space between Phase 1 and Phase 2, reflecting significant changes in parasite community 282 

composition. Although we observed a contraction of functional space over time in all buffalo, in 283 

control animals this contraction was only marginally significant and less than half the effect size 284 

seen in BTB-positive animals. The pattern in control animals suggests that there are age- and/or 285 

time-related shifts in the parasite community, but the magnitude of this shift differs when BTB is 286 

present. Thus, the presence of certain parasites, like BTB, seems to catalyze extraordinary shifts 287 

in community composition. 288 



BTB has previously been described to alter the incidence and progression of individual 289 

microparasites in buffalo (Rift Valley fever: (18); Brucella abortus: (21)). However, our results 290 

suggest that BTB may act as an ecological facilitator on a much larger scale than previously 291 

suggested, affecting a range of contact-transmitted, fast replicating, and simple life cycle 292 

parasites – traits typical of many viruses and bacteria. Additionally, our indicator species 293 

analysis suggested that two viral parasites, BHV and BRSV, were indicative of Phase 2 BTB 294 

buffalo, but not Phase 1 BTB animals, suggesting that BTB may increase the likelihood of 295 

acquiring these parasites. This could be due to increased susceptibility or altered disease 296 

progression - since both are diseases with a latent phase (BHV) or chronic carriers (BRSV); this 297 

suggests that treatment and control efforts for these parasites may be warranted when BTB is 298 

present in a host community. However, the taxonomic ordination space was comprised of many 299 

parasites whose frequency of occurrence changed between Phases 1 and 2, and consequently it is 300 

difficult to understand what other parasites may be affected, that are less well-described and 301 

well-known. Our trait analysis was particularly valuable because it allowed us to identify traits of 302 

parasites that may respond to the invasion of BTB. 303 

Our finding that BTB alters the community of parasites has widespread implications for 304 

managing health outcomes of BTB in wild animal populations, many of which are threatened or 305 

endangered, such as Iberian Lynx (Lynx pardinus) (63), as it suggests that one should not 306 

consider only the direct effects of TB in mitigation strategies but should also consider indirect 307 

effects via changing parasite communities. Beyond conservation, there are implications for 308 

public health and management as tuberculosis is a re-emerging disease worldwide (64–67). For 309 

instance, the prevention of co-infections may slow the progression of BTB infection, as has been 310 

discussed with helminths and BTB, where treatment of gastrointestinal parasites is known to 311 



increase survival time for individuals infected with BTB (12, 20), and in brucella where the 312 

presence of Brucella abortus slowed the invasion of BTB (21). A valuable next step would be to 313 

evaluate whether the treatment of contact transmitted, quickly replicating parasites can slow the 314 

progression of BTB infection, as has been found in humans (Homo sapiens) (68) and wild boar 315 

(Sus scrofa) (69).  316 

Interestingly, after BTB infection there was a small but significant decrease in two parasite 317 

taxa: Anaplasma marginale and strongyles. Buffalo in this study that were infected with both 318 

BTB and strongyles were much more likely to die (20) than those without strongyles, which 319 

suggests that the decrease in strongyles may be due to coinfected mortality. However, previous 320 

work by Gorsich et al (21) also demonstrated a co-infected mortality pattern between brucellosis 321 

and BTB that we did not detect with this analysis. This is likely because that was a very small 322 

effect, that is difficult to identify unless full longitudinal data are used – demonstrating the utility 323 

of multiple types of analyses when evaluating the effect of an invading parasite on native 324 

parasite communities. 325 

We found some evidence that animals that acquired BTB began the study with different 326 

parasite assemblages than those individuals that never acquired BTB. This may be due to the 327 

non-random sample of animals we selected for inclusion in the study. Buffalo had to survive at 328 

least 2 captures with BTB to be included in the study, and therefore we may only be assessing 329 

the “healthiest” animals with BTB, rather than those that died quickly. Alternatively, there may 330 

be a role for differences in susceptibility between BTB and control animals. Previous work has 331 

suggested that susceptibility to BTB in buffalo may have a genetic basis, and while the 332 

mechanism for susceptibility is unknown, it is possible that the genetic background of the 333 

individuals that acquire BTB may also affect other diseases (43). Lastly, it is possible that there 334 



are parasite assemblages that protect against the invasion of BTB within an individual; however, 335 

our indicator species analysis revealed that none of the parasites we examined were strongly 336 

associated with the BTB Phase 1 group. This suggests that a “protective” parasite community 337 

was not evident in the buffalo in our study. 338 

Our application of a novel functional diversity framework to examine trends in parasite 339 

composition before and after acquisition of an emerging infectious disease allowed us to detect 340 

patterns that were not apparent in previous studies and revealing the traits of parasites that may 341 

be most likely affected by the invasive disease, BTB. However, BTB is only one example of an 342 

emerging disease that may affect native parasite communities. As emerging diseases become 343 

more common (70) due to human activity (71, 72) and environmental changes (73–75), we must 344 

find new ways to evaluate their impacts and design mitigation strategies that acknowledge the 345 

complex parasite community that exists worldwide. We demonstrate that incorporating 346 

principles from community and functional ecology may allow researchers to understand the 347 

community dynamics of pathogens and the consequences for host health in many contexts across 348 

systems and scales.  349 
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Table 1. Parasite trait definitions (Si Appendix, Table S1 has citations for each parasite). Traits 

that are likely to play a major role in changing susceptibility are size of parasite, cellularity, 

primary transmission mode, life cycle, duplication time and length of infection.  Traits that are 

likely to play a major role in wasting or mortality  are host compartment, site of replication and 

fitness effects.    

Trait Categories and definition 

Size of parasite macro- large enough to be visible with the naked eye; micro- not large 

enough to be visible with the naked eye 

Cellularity acellular- e.g. viruses; single - e.g. most bacteria and protozoa; multi - 

trematode, nematodes, 

Primary 

transmission 

mode 

contact - primarily transmitted directly from one individual to another; 

environmental - primarily transmitted via contaminated fomites or 

ground; vector- transmitted by vectors (ticks, mosquitoes) 

Life Cycle simple - can complete a life cycle within one host; complex - parasite 

requires an intermediate host, vector, or environmental stage to 

complete life cycle 

Length of 

infection 

chronic - parasite with a "carrier or latent stage" in buffalo, or that 

animals do not clear with an immune response; acute- parasite that 

animals typically clear with an immune response 



Primary body 

compartment 

lung, GI tract, white blood cells, red blood cells, multi-site - site in the 

host of primary replication and/or the majority of the parasite life cycle 

Site of 

replication 

intra- or extracellular - whether the parasite replicates inside or outside 

host cells 

Duplication 

time 

the time it takes the parasite to duplicate its population; long- greater 

than one day; medium- between 5 & 24h; fast- <4h 

Fitness 

effects 

yes or no - Does the parasite reduce survival or fecundity in buffalo? 

  

 

 

 

 

 

 



 

Table 2. RM-ANOVA (Taxonomic Richness F=28.65, p<0.001, Functional Richness 

F=34.07, p<0.001) with Bonferroni posthoc comparisons demonstrate that BTB-infected 

animals experienced an increase in parasite richness in Phase 2 to a greater degree than 

control animals. Significance: p<0.01***, p<0.05* 

Comparison Taxonomic Richness Functional Richness 

  
Mean 

Difference 
p value 

Mean 

Difference 
p value 

Phase 1 vs. Phase 2 (BTB) 3.345 <0.001*** 2.929 <0.001*** 

Phase 1 vs. Phase 2 (Control) 1.069 0.051 1 0.067 

Phase 1 BTB vs. Phase 1 control 1.276 0.031* 1.036 0.067 

Phase 2 BTB vs. Phase 2 control 1 0.099 0.8929 0.067 

 



Figure 1. Phase 2 animals had higher parasite richness than Phase 1 animals, both 

taxonomically (panel A) and functionally (panel B). However BTB animals experienced a larger 

magnitude of increase in richness over time compared to control animals. Animals that acquired 

BTB had lower richness in Phase 1 than control animals and higher richness in Phase 2 than 

control animals. Statistics for between group comparisons are provided in Table 3. Lines 

represent means, bars are two standard error units, and each point is an individual buffalo. 

 

Figure 2. Nonmetric multidimensional scaling ordination of individual buffalo in parasite 

taxonomic space (panels A&B) and parasite trait space (panels C&D). Panel A is parasite 

taxonomic space for animals that acquired BTB (k = 3, Stress = 0.15), while Panel B is animals 

that did not acquire BTB (k = 3, Stress = 0.18). Panel C is parasite trait space for animals that 

acquired BTB (k = 2, Stress = 0.15) while panel D is animals that did not acquire BTB (k = 2, 

Stress = 0.18). The 95% confidence ellipses (gray) represent the standard deviation of the 

coordinates of Phase 1 and Phase 2 buffalo. Parasites that are correlated with the axes are 

listed alongside the ordinations A&B (Spearman correlation > 0.5; see supplementary material 

for details), while traits that correlate with the axes are listed alongside the ordinations C&D 

(Spearman correlation > 0.7, Tables S2 and S3 shows all associations greater than 0.5). 
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