326 research outputs found
The Teggiolo zone: a key to the Helvetic-Penninic connection (stratigraphy and tectonics in the Val Bavona, Ticino, Central Alps)
The Teggiolo zone is the sedimentary cover of the Antigorio nappe, one of the lowest tectonic units of the Penninic Central Alps. Detailed mapping, stratigraphic and structural analyses, and comparisons with less metamorphic series in several well-studied domains of the Alps, provide a new stratigraphic interpretation. The Teggiolo zone is comprised of several sedimentary cycles, separated by erosive surfaces and large stratigraphic gaps, which cover the time span from Triassic to Eocene. At Mid-Jurassic times it appears as an uplifted, partially emergent block, marking the southern limit of the main Helvetic basin (the Limiting South-Helvetic Rise LSHR). The main mass of the Teggiolo calcschists, whose base truncates the Triassic-Jurassic cycles and can erode the Antigorio basement, consists of fine-grained clastic sediments analogous to the deep-water flyschoid deposits of Late Cretaceous to Eocene age in the North-Penninic (or Valais s.l.) basins. Thus the Antigorio-Teggiolo domain occupies a crucial paleogeographic position, on the boundary between the Helvetic and Penninic realms: from Triassic to Early Cretaceous its affinity is with the Helvetic; at the end of Cretaceous it is incorporated into the North-Penninic basins. An unexpected result is the discovery of the important role played by complex formations of wildflysch type at the top of the Teggiolo zone. They contain blocks of various sizes. According to their nature, three different associations are distinguished that have specific vertical and lateral distributions. These blocks give clues to the existence of territories that have disappeared from the present-day level of observation and impose constraints on the kinematics of early folding and embryonic nappe emplacement. Tectonics produced several phases of superimposed folds and schistosities, more in the metasediments than in the gneissic basement. Older deformations that predate the amplification of the frontal hinge of the nappe generated the dominant schistosity and the km-wide Vanzèla isoclinal fol
Mimicking Alpine thrusts by passive deformation of synsedimentary normal faults: a record of the Jurassic extension of the European margin (Mont Fort nappe, Pennine Alps)
Abstract The Mont Fort nappe, former uppermost subunit of the Grand St-Bernard nappe system, is an independent tectonic unit with specific structural and stratigraphic characteristics (Middle Penninic, NW Italy and SW Switzerland). It consists in a Paleozoic basement, overlain by a thin, discontinuous cover of Triassic-Jurassic metasediments, mainly breccias, called the Evolène Series. The contact of this Series over the Mont Fort basement is debated: stratigraphic or tectonic? We present new observations that support the stratigraphic interpretation and consequently imply that the Evolène Series belongs to the Mont Fort nappe. We moreover show that the Mont Fort nappe was strongly affected by normal faulting during Jurassic. These faults went long unnoticed because Alpine orogenic deformation blurred the record. Alpine strain erased their original obliquity, causing confusion with an Alpine low-angle thrust. These Jurassic faults have been passively deformed during Alpine tectonics, without inversion or any other kind of reactivation. They behaved like passive markers of the Alpine strain. Detailed field observations reveal the link between observed faults and specific breccia accumulations. Areas where the Evolène Series is missing correspond to sectors where the fault scarps were exposed on the bottom of the sea but were too steep to keep the syn- to post-faulting sediments. The Mont Fort nappe thus represents an example of a distal rifted margin. The succession of synsedimentary extensional movements followed by orogenic shortening generated a situation where passively deformed normal faults mimic an orogenic thrust
Continent-derived metasediments (Cimes Blanches and Frilihorn) within the ophiolites around Zermatt: relations with the Mischabel backfold and Mont Fort nappe (Pennine Alps)
The region surrounding Zermatt (SW Switzerland and NW Italy) displays some classic examples of imbrications between continental and oceanic units. In particular, the studied units, called Cimes Blanches and Frilihorn or Faisceau Vermiculaire, consist of a set of thin bands of continent-derived metasediments intercalated at different levels within the ocean-derived units. These bands are locally reduced to only one meter thick but can be traced for several tens to more than one hundred kilometers across the Pennine Alps. The mechanisms leading to such imbrications are a long-standing and still-debated question. Based on detailed mapping and structural analysis of key areas, we present new data on the structure and stratigraphy of the Faisceau Vermiculaire in the area surrounding Zermatt, with particular focus on the Täschalpen sector, where the Faisceau Vermiculaire is locally in contact with basement units. Our observations allow: (i) to confirm the presence of widespread breccias of probable Jurassic age in the Faisceau Vermiculaire; (ii) to interpret the contacts between the Faisceau Vermiculaire and the overlying non-ophiolitic Schistes Lustrés (Série Rousse) as stratigraphic; (iii) to show that the stratigraphy of the Faisceau Vermiculaire and associated Série Rousse contrasts strongly with the cover of the Siviez-Mischabel nappe and that these sequences originate from different paleogeographic domains (Prepiemont basin and Briançonnais platform respectively); (iv) to interpret as stratigraphic the contact of the Faisceau Vermiculaire and the Série Rousse with the basement forming the Alphubel anticline; the local unconformity is interpreted as the result of the activity of synsedimentary Jurassic normal paleofaults; (v) to highlight the trace of a major Jurassic normal fault, that should have marked an abrupt thinning of the paleomargin; it corresponds now to the contact between the Faisceau Vermiculaire (and associated Série Rousse) and the Siviez-Mischabel basement in the hinge of the Mischabel backfold. We propose a new tectonic scheme for the structure of the Faisceau Vermiculaire and adjacent units involving an early northward folding of the Faisceau Vermiculaire with the Série Rousse and the ophiolitic Schistes Lustrés of the Tsaté nappe, followed by major backfolding responsible for the southward emplacement of these units above the HP Zermatt- Saas and Monte Rosa nappes. Our study at regional scale shows that the group formed by the Alphubel basement, the Faisceau Vermiculaire and the Série Rousse share a tectonic position and stratigraphic sequences identical to those of the Mont Fort nappe, which outcrops on the other side of the Dent Blanche klippe. It leads to the proposition that this group constitutes the eastern extension of the Mont Fort nappe
Timing of Palaeozoic magmatism in the Maggia and Sambuco nappes and paleogeographic implications (Central Lepontine Alps)
Magmatic rocks from the pre-Mesozoic basements of the Sambuco and Maggia nappes have been dated by U-Pb zircon ages with the LA-ICPMS technique. Several magmatic events have been identified in the Sambuco nappe. The mafic banded calc-alkaline suite of Scheggia is dated at 540Ma, an age comparable to that of mafic rocks in the Austroalpine Silvretta nappe. The Sasso Nero peraluminous augengneiss has an age of 480-470Ma, like many other "older orthogneisses” in Alpine basement units. It hosts a large proportion of inherited zircons, which were dated around 630Ma, a Panafrican age indicating the Gondwanan affiliation of the Sambuco basement. The calc-alkaline Matorello pluton yielded ages around 300Ma, similar to numerous Late Carboniferous intrusions in other basement units of the Lower Penninic (Monte Leone, Antigorio, Verampio) and Helvetic domains (Gotthard and other External Crystalline Massifs). Associated lamprophyric dykes are slightly younger (300-290Ma), like similar dykes sampled in gneiss blocks included in the sedimentary cover of the underlying Antigorio nappe (290-285Ma). The Cocco granodiorite and Rüscada leucogranite, both intruding the basement of the neighbouring Maggia nappe, yielded ages of ca. 300-310Ma, identical within errors to the age of the Matorello pluton. They are significantly older than former age determinations. This age coincidence, coupled with remarkable petrologic similarities between the Cocco and Matorello granodiorites, strongly suggests paleogeographic proximity of the Sambuco and Maggia nappes in Late Carboniferous times. In recent publications these two nappes have been interpreted as belonging to distinct Mesozoic paleogeographic domains: "European” for Sambuco and "Briançonnais” for Maggia, separated by the "Valais” oceanic basin. In this case, the similarity of the Matorello and Cocco intrusions would demonstrate the absence of any significant transcurrent movement between these two continental domains. Alternatively, according to a more traditional view, Sambuco and Maggia might belong to a single large Alpine tectonic uni
Geological structure, recharge processes and underground drainage of a glacierised karst aquifer system, Tsanfleuron-Sanetsch, Swiss Alps
The relationships between stratigraphic and tectonic setting, recharge processes and underground drainage of the glacierised karst aquifer system ‘Tsanfleuron-Sanetsch' in the Swiss Alps have been studied by means of various methods, particularly tracer tests (19 injections). The area belongs to the Helvetic nappes and consists of Jurassic to Palaeogene sedimentary rocks. Strata are folded and form a regional anticlinorium. Cretaceous Urgonian limestone constitutes the main karst aquifer, overlain by a retreating glacier in its upper part. Polished limestone surfaces are exposed between the glacier front and the end moraine of 1855/1860 (Little Ice Age); typical alpine karrenfields can be observed further below. Results show that (1) large parts of the area are drained by the Glarey spring, which is used as a drinking water source, while marginal parts belong to the catchments of other springs; (2) groundwater flow towards the Glarey spring occurs in the main aquifer, parallel to stratification, while flow towards another spring crosses the entire stratigraphic sequence, consisting of about 800m of marl and limestone, along deep faults that were probably enlarged by mass movements; (3) the variability of glacial meltwater production influences the shape of the tracer breakthrough curves and, consequently, flow and transport in the aquife
Towards a rapidly rotating liquid sodium dynamo experiment
The main characteristics of the Earth's dynamo are reviewed. The combined actions of Coriolisand Lorentz forces lead to the so--called ``magnetostrophic'' regime. We derive an estimate of the power needed to sustain the magnetic field in this regime. We show that an experimentwith liquid sodium can be designed to operate in the magnetostrophic regime. Such an experiment would bring most valuable informations on the mechanisms of planetary dynamos. In order toprepare this large--scale experiment and explore the magnetostrophic balance, a smaller scale liquid sodium set--up has been designed and is being built. It consists of a rapidly rotating spherical shell filled with liquid sodium, in which motions are set by spinning at a different rotation rate an inner core permeated by a strong magnetic field. We discuss the processes that can be explored with this new device
- …