11 research outputs found

    The structure of the lantibiotic lacticin 481 produced by Lactococcus lactis:location of the thioether bridges

    Get PDF
    AbstractThe lantibiotic lacticin 481 is a bacteriocin produced by Lactococcus lactis ssp. lactis. This polypeptide contains 27 amino acids, including the unusual residues dehydrobutyrine and the thioether-bridging lanthionine and 3-methyllanthionine. Lacticin 481 belongs to a structurally distinct group of lantibiotics, which also include streptococcin A-FF22, salivaricin A and variacin. Here we report the first complete structure of this type of lantibiotic. The exact location of the thioether bridges in lacticin 481 was determined by a combination of peptide chemistry, mass spectrometry and NMR spectroscopy, showing connections between residues 9 and 14, 11 and 25, and 18 and 26

    Structural Features of the Final Intermediate in the Biosynthesis of the Lantibiotic Nisin. Influence of the Leader Peptide

    Get PDF
    The antimicrobial membrane-interacting polypeptide nisin is a prominent member of the lantibiotic family, the members of which contain thioether-bridged residues called lanthionines. To gain insight into the complex biosynthesis and the structure/function relationship of lantibiotics, the final intermediate in the biosynthesis of nisin A was studied by nuclear magnetic resonance spectroscopy. In aqueous solution the leader peptide part of this precursor adopts predominantly a random coil structure, as does the synthetic leader peptide itself. The spatial structure of the fully modified nisin part of the precursor is similar to that of nisin in water. The leader peptide part does not interact with the nisin part of the precursor molecule. Thus, these two parts of the precursor do not influence each other’s conformation significantly. The conformation of the precursor was also studied while complexed to micelles of dodecylphosphocholine, mimicking the primary target of the antimicrobial activity of nisin, i.e. the cytoplasmic membrane. The location of the molecule relative to the micelles was investigated by using micelle-inserted spin-labeled 5-doxylstearic acid. It was observed that the N-terminal half of the nisin part of the precursor interacts in a different way with micelles than does the corresponding part of mature nisin, whereas no significant differences were found for the C-terminal half of the nisin part. In this model system the leader peptide is in contact with the micelles. It is concluded that the strongly reduced in vivo activity of the precursor molecule relative to that of nisin is not caused by a difference in the spatial structure of nisin and of the corresponding part of precursor nisin in water or by a shielding of the membrane interaction surface of the nisin part of the precursor by the leader peptide. Probably a different interaction of the N-terminal part of the nisin region with membranes contributes to the low activity by preventing productive insertion. The residues of the leader peptide part just next to the nisin part are likely to contribute most to the low activity of the precursor.

    The race-specific elicitor AVR9 of the tomato pathogen Cladosporium fulvum: a cystine knot protein; sequence-specific 1H NMR assignment, secondary structure and global fold of the protein.

    Get PDF
    The secondary structure and global fold of the AVR9 elicitor protein of Cladosporium fulvum has been determined by 2D NMR and distance-geometry protocols. The protein consists of three anti-parallel strands forming a rigid region of β-sheet. On the basis of the NMR-derived parameters and distance geometry calculations, it is evident that the AVR9 protein is structurally very homologous to carboxy peptidase inhibitor (CPI) of which the X-ray structure is known. The AVR9 protein reveals the presence of a cystine knot, which consists of a ring formed by two disulfide bridges and the interconnecting backbone through which the third disulfide bridge penetrates. This structural motif is found in several small proteins such as proteinase inhibitors, ion channel blockers and growth factors. The implications of the structural relationship between AVR9 and other biologically active proteins are discussed

    Mechanistic Studies of Lantibiotic-Induced Permeabilization of Phospholipid Vesicles

    Get PDF
    Nisin is a cationic polycyclic bacteriocin secreted by some lactic acid bacteria. Nisin has previously been shown to permeabilize liposomes. The interaction of nisin was analyzed with liposomes prepared of the zwitterionic phosphatidylcholine (PC) and the anionic phosphatidylglycerol (PG). Nisin induces the release of 6-carboxyfluorescein and other small anionic fluorescent dyes from PC liposomes in a Δψ-stimulated manner, and not that of neutral and cationic fluorescent dyes. This activity is blocked in PG liposomes. Nisin, however, efficiently dissipates the Δψ in cytochrome c oxidase proteoliposomes reconstituted with PG, with a threshold Δψ requirement of about -100 mV. Nisin associates with the anionic surface of PG liposomes and disturbs the lipid dynamics near the phospholipid polar head group-water interface. Further studies with a novel cationic lantibiotic, epilancin K7, indicate that this molecule penetrates into the hydrophobic carbon region of the lipid bilayer upon the imposition of a Δψ. It is concluded that nisin acts as an anion-selective carrier in the absence of anionic phospholipids. In vivo, however, this activity is likely to be prevented by electrostatic interactions with anionic lipids of the target membrane. It is suggested that pore formation by cationic (type A) lantibiotics involves the local perturbation of the bilayer structure and a Δψ-dependent reorientation of these molecules from a surface-bound into a membrane-inserted configuration.
    corecore