706 research outputs found

    Exchange couplings in the magnetic molecular cluster Mn12Ac

    Full text link
    The magnetic properties of the molecular cluster Mn12Ac are due to the four Mn3+ ions which have spins S=3/2 and the eight Mn4+ ions with spins S=2. These spins are coupled by superexchange mechanism. We determine the four exchange couplings assuming a Heisenberg-type interaction between the ions. We use exact diagonalization of the spin Hamiltonian by a Lanczos algorithm and we adjust the couplings to reproduce the magnetization curve of Mn12Ac. We also impose the constraint of reproducing a gap of 35K between a S=10 ground state and a first excited state with S=9. We predict that there is an excited level with S=8 at 37K above the ground state, only slightly above the S=9 excited state which lies at 35K and the next excited state is a S=9 multiplet at 67K above the S=10 ground state.Comment: 15 pages, 6 figures, submitted to Phys Rev B, corrected a misTeX: values of J1, J2 have changed, refs update

    Inhomogeneous Magnetism in La-doped CaMnO3. (II) Mesoscopic Phase Separation due to Lattice-coupled FM Interactions

    Full text link
    A detailed investigation of mesoscopic magnetic and crystallographic phase separation in Ca(1-x)La(x)MnO3, 0.00<=x<=0.20, is reported. Neutron powder diffraction and DC-magnetization techniques have been used to isolate the different roles played by electrons doped into the eg level as a function of their concentration x. The presence of multiple low-temperature magnetic and crystallographic phases within individual polycrystalline samples is argued to be an intrinsic feature of the system that follows from the shifting balance between competing FM and AFM interactions as a function of temperature. FM double-exchange interactions associated with doped eg electrons are favored over competing AFM interactions at higher temperatures, and couple more strongly with the lattice via orbital polarization. These FM interactions thereby play a privileged role, even at low eg electron concentrations, by virtue of structural modifications induced above the AFM transition temperatures.Comment: 8 pages, 7 figure

    Low energy magnetic excitations of the Mn_{12}-acetate spin cluster observed by neutron scattering

    Full text link
    We performed high resolution diffraction and inelastic neutron scattering measurements of Mn_{12}-acetate. Using a very high energy resolution, we could separate the energy levels corresponding to the splitting of the lowest S multiplet. Data were analyzed within a single spin model (S=10 ground state), using a spin Hamiltonian with parameters up to 4^{th} order. The non regular spacing of the transition energies unambiguously shows the presence of high order terms in the anisotropy (D= -0.457(2) cm^{-1}, B_4^0 = -2.33(4) 10^{-5}cm^{-1}). The relative intensity of the lowest energy peaks is very sensitive to the small transverse term, supposed to be mainly responsible for quantum tunneling. This allows an accurate determination of this term in zero magnetic field (B_4^4 = \pm 3.0(5) 10^{-5} cm^{-1}). The neutron results are discussed in view of recent experiments and theories.Comment: 4 pages ? 3 figures, submitted to Physical Review Lette

    Inhomogeneous magnetism in La-doped CaMnO3. (I) Nanometric-scale spin clusters and long-range spin canting

    Full text link
    Neutron measurements on Ca{1-x}La{x}MnO3 (0.00 <= x <= 0.20) reveal the development of a liquid-like spatial distribution of magnetic droplets of average size ~10 Angstroms, the concentration of which is proportional to x (one cluster per ~60 doped electrons). In addition, a long-range ordered ferromagnetic component is observed for ~0.05 < x < ~0.14. This component is perpendicularly coupled to the simple G-type antiferromagnetic (G-AFM) structure of the undoped compound, which is a signature of a G-AFM + FM spin-canted state. The possible relationship between cluster formation and the stabilization of a long-range spin-canting for intermediate doping is discussed.Comment: Submitted to Physical Review

    Rôle du massage utérin pratiqué lors de l’insémination artificielle sur le pourcentage des fécondations (Résultats préliminaires)

    Get PDF
    Besançon R., Brochart Michel, Hennion . Rôle du massage utérin pratiqué lors de l’insémination artificielle sur le pourcentage des fécondations (résultats préliminaires). In: Bulletin de l'Académie Vétérinaire de France tome 103 n°9, 1950. pp. 493-494

    Static critical exponents of the ferromagnetic transition in spin glass re-entrant systems

    Full text link
    The static critical phenomenology near the Curie temperature of the re-entrant metallic alloys Au_0.81Fe_0.19, Ni_0.78Mn_0.22, Ni_0.79Mn_0.21 and amorphous a-Fe_0.98Zr_0.08 is studied using a variety of experimental techniques and methods of analysis. We have generally found that the values for the exponents alpha, beta, gamma and delta depart significantly from the predictions for the 3D Heisenberg model and are intermediate between these expectations and the values characterizing a typical spin glass transition. Comparing the exponents obtained in our work with indices for other re-entrant systems reported in the literature, a weak universality class may be defined where the exponents distribute within a certain range around average values.Comment: 17 pages, 11 figure

    Phase diagram and magnetic properties of La1x_{1-x}Cax_xMnO3_3 compound for 0x0.230\leq x \leq 0.23

    Full text link
    In this article a detailed study of La1x_{1-x}Cax_xMnO3_3 (0x0.230\leq x \leq 0.23) phase diagram using powder x-ray diffraction and magnetization measurements is presented. Unfortunately, in the related literature no properly characterized samples have been used, with consequence the smearing of the real physics in this complicated system. As the present results reveal, there are two families of samples. The first family concerns samples prepared in atmosphere (P(O2)=0.2P({\rm O}_2)=0.2 Atm) which are all ferromagnetic with Curie temperature rising with xx. The second family concerns samples, where a post annealing in nearly zero oxygen partial pressure is applied. These samples show a canted antiferromagnetic structure for 0x0.10\leq x \leq 0.1 below TNT_N, while for 0.125x<0.230.125\leq x <0.23 an unconventional ferromagnetic insulated phase is present below TcT_c. The most important difference between nonstoichiometric and stoichiometric samples concerning the magnetic behavior, is the anisotropy in the exchange interactions, in the stoichiometric samples putting forward the idea that a new orbital ordered phase is responsible for the ferromagnetic insulating regime in the La1x_{1-x}Cax_xMnO3_3 compound

    Percolative conductivity and critical exponents in mixed-valent manganites

    Get PDF
    Recent experiments have shown that some colossal magnetoresistance (CMR) materials exhibit a percolation transition. The conductivity exponent varies substantially with or without an external magnetic field. This finding prompted us to carry out theoretical studies of percolation transition in CMR systems. We find that the percolation transition coincides with the magnetic transition and this causes a large effect of a magnetic field on the percolation transition. Using real-space-renormalization method and numerical calculations for two-dimensional (2D) and three-dimensional (3D) models, we obtain the conductivity exponent tt to be 5.3 (3D) and 3.3 (2D) without a magnetic field, and 1.7 (3D) and 1.4 (2D) with a magnetic field.Comment: 4 pages, 4 figures. To appear in Rapid Communications of Phys. Rev.

    Heat Conduction and Magnetic Phase Behavior in Electron-Doped Ca_{1-x} La_x MnO_3(0 <= x <= 0.2)

    Full text link
    Measurements of thermal conductivity (kappa) vs temperature are reported for a series of Ca_{1-x} La_x MnO_3(0 <= x <= 0.2) specimens. For the undoped (x=0), G-type antiferromagnetic compound a large enhancement of kappa below the Neel temperature (T_N ~ 125 K) indicates a strong coupling of heat-carrying phonons to the spin system. This enhancement exhibits a nonmonotonic behavior with increasing x and correlates remarkably well with the small ferromagnetic component of the magnetization reported previously [Neumeier and Cohn, Phys. Rev. B 61 14319 (2000).] Magnetoelastic polaron formation appears to underly the behavior of kappa and the magnetization at x <= 0.02.Comment: submitted to PRB; 4 pp., 4 Fig.'s, RevTex

    Properties of low-lying states in some high-nuclearity Mn, Fe and V clusters: Exact studies of Heisenberg models

    Full text link
    Using an efficient numerical scheme that exploits spatial symmetries and spin parity, we have obtained the exact low-lying eigenstates of exchange Hamiltonians for the high nuclearity spin clusters, Mn_{12}, Fe_8 and V_{15}. The largest calculation involves the Mn_{12} cluster which spans a Fock space of a hundred million. Our results show that the earlier estimates of the exchange constants need to be revised for the Mn_{12} cluster to explain the level ordering of low-lying eigenstates. In the case of the Fe_8 cluster, correct level ordering can be obtained which is consistent with the exchange constants for the already known clusters with butterfly structure. In the V_{15} cluster, we obtain an effective Hamiltonian that reproduces exactly, the eight low-lying eigenvalues of the full Hamiltonian.Comment: Revtex, 12 pages, 16 eps figures; this is the final published versio
    corecore