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Recent experiments have shown that some colossal magnetoresistance~CMR! materials exhibit a percolation
transition. The conductivity exponent varies substantially with or without an external magnetic field. This
finding prompted us to carry out theoretical studies of percolation transition in CMR systems. We find that the
percolation transition coincides with the magnetic transition, and therefore the magnetic field has a large effect
on the percolation transition. Using a real-space-renormalization method and numerical calculations for two-
dimensional~2D! and three-dimensional~3D! models, we obtain the conductivity exponentt to be 5.3~3D! and
3.3 ~2D! without a magnetic field, and 1.7~3D! and 1.4~2D! with a magnetic field.
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Colossal magnetoresistance~CMR!, an unusual large
change of resistivity in the presence of a magnetic field,
been extensively studied in ferromagnetic perovsk
manganites.1 It is well known that the electronic phase di
grams of CMR materials are very complex. There are vari
ordering states and phase transitions as the carrier conce
tion is varied. For example, La12xCaxMnO3, a typical double
exchange ferromagnetic metal whenx50.33, becomes a
charge ordered insulator with a specific type of electro
orbital and magnetic orderings whenx51/2.2 Recently, it
was demonstrated that a La12x2yPryCaxMnO3 (x53/8) sys-
tem, where Pr is chosen to vary the chemical pressure,
be electronically phase separated into a submicrometer-s
mixture of insulating regions and ferromagnetic~FM! metal-
lic regions.3,4 Experimental findings of FM clusters an
phase separation in CMR materials have also been repo
in early studies.5 Electron diffraction and dark-field imagin
on the La12x2yPryCaxMnO3 samples indicate that the insu
lating region is ax51/2 charge ordered phase. This is no
charge congregation type of phase separation, which was
served in slightly doped antiferromagnetic manganites6 and
was extensively discussed.7 The CMR effect was observed i
different samples with 0.275,y,0.41, and was explaine
by percolative transport through the ferromagnetic doma
According to the percolation theory, the conductivitys}(p
2p0) t, wherep is the concentration of the metallic pha
andp0 is its critical value. In Ref. 3, the exponent was stu
ied in the presence and absence of an external magnetic
and two values are substantially different. Thus, the exp
ment shows that the percolative transport in the CMR s
tems depends sensitively on the relative spin orientation
adjacent ferromagnetic domains which is controlled by
applied magnetic field. The goal of this work is to develop
percolation theory which takes into account the magn
transition in the CMR materials. In particular, we would lik
to understand what causes the exponent to be so diffe
with or without an external magnetic field.

Based on phenomenological considerations, we st
two- or three-dimensional~2D or 3D! lattice percolation
models. The conductivity and its critical exponent are cal
lated by means of real-space renormalization and nume
0163-1829/2001/63~14!/140418~4!/$20.00 63 1404
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methods. The system consists of three types of lattice s
Each site has spinSi(561,0) wherei denotes the index of a
site. This model is similar to the site-diluted spin syste
used in Ref. 8.Si50 implies that the site is empty, meanin
occupied by thex51/2 charge ordered phase.Si561 means
the site is occupied by the ferromagnetic metallic phase w
up and down magnetizations.9 The Hamiltonian of the spin
interaction is Ising-like and is written as

Hs52J(
^ i , j &

Si•Sj1(
i

H•Si . ~1!

Here ^ i , j & denotes a pair of the nearest-neighbor sites,J is
the interaction energy, andH is the strength of the externa
magnetic field. We consider a ferromagnetic interaction, i
J.0. In order to investigate transport properties, we assu
that the local conductivity between two nearest occup
sites is either 0 for antiparallel spins (↑↓ and↓↑) or 1 for
parallel spins (↑↑ and↓↓) and is zero if one or both sites ar
empty. Thus, the conductivity between neighboring sites
be expressed as follows

s i j 5H 1, Si•Sj51;

0, otherwise.
~2!

First, we use the standard Monte-Carlo method to stu
the magnetic properties of the model. Knowing the sp
structure is necessary for the transport studies since the
conductivity depends on the spins through Eq.~2!. The con-
ductance calculation is performed on a set of spin confi
rations produced by the Markov chain. In the Markov cha
every spin configuration is generated from the previous
by using the probabilitye2bDHs/(e2bDHs11), whereDHs is
the energy difference between these two configurations
b51/kBT.11 The calculations are carried out on finite squa
and cubic lattices for 2D and 3D systems and the perio
boundary condition is adopted to eliminate the boundary
fects. The conductanceG for every spin configuration in the
Markov chain is obtained by calculating the total condu
tance of the resistor network.10 In the resistor network, the
local conductivity between neighboring sites is determin
©2001 The American Physical Society18-1
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by Eq. ~2!. The total conductance is calculated for ma
samples to obtain the average conductance.

When the charge order~CO! phase is dominant in some o
the CMR materials, most sites are empty according to
model. Thus, most of the conductivities between neighbor
sites are zero, corresponding to the low concentration li
(p;0) in the percolation model, wherep is the probability
of nonzero local conductivity. The small FM islands are w
separated by the CO phase. Because the spin correla
between FM blocks are cut off by the CO phase, the s
orientation for each FM block is random, either up or dow
Therefore, the spontaneous magnetizationm will be zero at
any temperatureT. As p increases,m continues to be zero
until p reachesp0 at which the first infinite FM cluster ap
pears. Ifp.p0, a finite spontaneous magnetization appe
for T,Tc(p) with Tc(p) the critical temperature at concen
trationp. In Figs. 1~a! and 1~b! we plot the normalized mag
netizationm as a function of temperatureT with different
concentration probabilitiesp for 2D and 3D systems, respec
tively, calculated using the Monte-Carlo method. The int
action strengthJ is set to unity. It can be seen that when t
temperature increasesm is reduced and reaches zero
Tc(p). From magnetization data with different size samp
and through finite-size scaling, we can determine the crit
temperature. In Figs. 2~a! and 2~b! we plot the relation be-
tween the critical temperatureTc(p) and the concentrationp.

FIG. 1. ~a! The normalized spontaneous magnetizationm as a
function of temperatureT for different concentrationp in the 2D
model. The unit ofT is set by the interaction strengthJ/kB . From
top to bottom, the concentrations arep51.0, 0.9, 0.8, 0.7, 0.6, and
0.5 The calculation is performed on 1000 samples whose sizes
1003100.~b! m as a function ofT in the 3D model. The calculation
is performed on 200 samples whose sizes are 10310310. From top
to bottom, the concentrations arep51.0, 0.9, 0.8, 0.7, 0.6, 0.5
0.4, 0.3, and 0.2.
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As shown in these plots,Tc(p) will approach the Curie tem-
peratureTc for the regular Ising model asp approaches 1.
We find thatTc determined from Fig. 2 is 2.3J or 4.4J for a
2D or 3D system. Both of them are in good agreement w
the values of the regular Ising model.12

From the spin configurations of the system, we can cal
late the conductance by using the local conductivity defin
in Eq. ~2!. In a paramagnetic phase, there is no infinite cl
ter with spins pointing in the same direction. Hence, acco
ing to Eq. ~2! there is no conducting path throughout th
sample. On the other hand, the first conducting path app
simultaneously when the magnetization starts becoming n
zero. Thus, the phase transition from the FM phase to t
paramagnetic phase is accompanied by the metal-insula
(MI) transition in the conductance.This implies that at zero
temperature the MI transition occurs at the critical conc
tration of the percolation threshold,p0. Near the critical
point the averaged conductanceG can be expressed asG
;(p2p0) t, wheret is the conductance critical exponent fo
the transition.

We now discuss the real-space renormalization meth
We start with a 2D system and later extend to a more co
plicated 3D system. The essential physics does not dep
on dimensionality, although numerical numbers do. Consi
a triangular lattice in a 2D plane. The choice of a triangu
lattice is for the convenience of rescaling of the system in
real-space renormalization procedure. By enlarging the s
tem by factorA3 and grouping every three sites into a ‘‘s
persite,’’ the number of the supersites is the same as
number of sites in the original system~see Fig. 3!. In Fig. 3,
the thin lines are for the original system and the thick lin
are for the rescaled system. A supersite is regarded as e
if the majority of the three sites is empty. Thus the conce
tration of the system can be expressed asp85p313p2(1
2p) ~Ref. 13!. Near the critical pointp050.5, on the metal-
lic side,G can be written asG5G0(p2p0) t, where the con-
stantG0 is proportional to the conductance of the unit ce
For the enlarged system this relation becomesG85G08(p8
2p0) t. In a 2D system the conductance is independent of
system size and we haveG5G8. Thus,t5 ln(G0 /G08)/ln@(p8
2p0 /p2p0)#. If the spin degree of freedom is frozen, th
conductance of elementary cell is inversely proportional

the size of the cell, hence,t5 ln(A3)/ln(3
2)51.35. This value

is very close to the exact value oft54/3 in the standard 2D
percolation model.14 When taking into account the spin de

re

FIG. 2. ~a! The critical temperatureTc as a function of the
concentrationp in 2D. ~b! The critical temperatureTc as a function
of the concentrationp in 3D.
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grees of freedom, as we discussed above, thep0 point is also
the critical point for the spontaneous magnetization. T
conductanceG0 ~or G08) is now associated with spin configu
rations. The spin dependence comes from the fact thatG0 is
proportional to the average of conductivity between t
nearest-neighbor sites which is spin dependent,

G0;^s i j &; K cosS u i2u j

2 D L
5

1

AE0

p

du iE
0

2p

df iE
0

p

du jE
0

2p

df j

3e2bmScosu ie2bmScosu j cosS u i j

2 D . ~3!

The conductivity expression between the nearest-neigh
spin s i j ;cos(uij /2) comes from the double exchange mod
whereu i j is the angular difference between spinsSi andSj ,
which satisfies15

cosu i j 5cosu i cosu j1sinu i sinu j cos~f i2f j !. ~4!

(u i ,f i) denotes the orientation of spinSi . A is a normaliza-
tion constant. From the above equation, it is easy to sh
thatG0;m2. Becausem can be written asm;(p2p0),13 we
finally get the conductance critical exponent in 2D triangu
lattice ast8.1.351253.35.

In the 3D case, we consider the normal cubic lattice. T
elementary vectors of the enlarged lattice is just two times
those of the original one$êx8,êy8,êz8%5$2êx,2êy,2êz%. In

this casep85(n54
8 C8

npn(12p)82n, from which we con-
clude thatp050.395 andt51.7 without spin effects. After
the spin degrees of freedom are considered, the formulaG0
;m2 is still satisfied. But in a 3D casem has m;(p
2p0)1.79.13 So the critical exponentt8.1.71231.79.5.3.

In Fig. 4 we show the numerical results of 2D condu
tanceG. The 3D calculation has not been done because
computational limit. The points with the steepest drop
defined as the critical points for the metal-insulator tran
tion. These points are consistent with the magnetic crit
points ~see Fig. 1!, as we discussed before. In the inset

FIG. 3. Illustration of renormalization in a 2d triangle lattice.
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Fig. 4 we show the ln(G) versus ln(p2p0). They exhibit a
linear dependence and the slope of the curve, correspon
to the exponentt, is roughly 3.5. This value is in good agree
ment with the estimation from the renormalization gro
consideration although it is obtained from a different type
lattice structure. In Table I we list the results of this wo
and compare them with the previous studies of the stand
percolation theory14 and experimental exponents in CM
materials.3,4 The experimental exponentt3 ~or t38) was ob-
tained in the absence~or presence! of an external magnetic
field.

Before summary, we would like to make a couple of co
ments.~i! In order to calculate the conductivity exponent, w
have to determine the dependence ofG0 @see Eq.~3!# on the
magnetizationm, and the double exchange model is used
achieve that goal. However, the double exchange may no
the origin of the ferromagnetism in doped manganites,
shown in a recent work.16 This might explain some of the
discrepancy between the experimental and our theore
values in the conductivity exponent. We should also ment
that the values from the two experimental groups are no

FIG. 4. The normalized conductivityG as a function of tempera
ture T in a 2D model. From top to bottom, the concentrations
p51.0, 0.9, 0.7, 0.6, and 0.5. Inset: logG vs log(p2p0) shows a
linear behavior with a slope.3.5.

TABLE I. The critical exponentt for 2d and 3d cases.pc2 and
pc3 are percolation threshold for 2d and 3d, respectively.td andtd8
are the critical exponents for thed-dimension model without or with
spin effects. Previous results are from Ref. 14. Experiment I is fr
Ref. 3 and Experiment II is from Ref. 4.

pc2 pc3 t2 t3 t28 t38

Previous results 0.5 0.31 1.33 1.9
Experiment I 2.6 6.1
Experiment II 2.6
Renormalization method 0.5 0.37 1.35 1.7 3.3 5
Numerical results 0.51 0.32 1.30 3.5
8-3
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good agreement with each other as seen in Table I.~ii ! We
have neglected the quantum effects in this work. This mi
be justified becauseTc is relatively high in these samples
Developing a semiclassical transport theory in this probl
is a difficult task because of the finite-phase cohere
length. There are attempts17 of using the semiclassical theor
to understand the two-dimensional metal-insulator transit

In summary, we argue that the percolation threshold c
responds not only to the appearance of an infinite metal c
ter, but also to the phase transition from PM to FM. Th
coincidence of two phase transitions renormalizes the crit
ys

ur

A.

ns
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exponents. The conductivity exponent has been obtained
ing real-space renormalization and numerical calculatio
The exponent is found to be quite different whether the m
netic transition is considered. This finding explains the la
exponent discrepancy in some of the CMR materials in
presence or absence of an external magnetic field.
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