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PHYSICAL REVIEW B, VOLUME 63, 14041€6R)

Ye Xiong?! Shun-Qing SheA? and X. C. Xié
!Department of Physics, Oklahoma State University, Stillwater, Oklahoma 74078
’Department of Physics, The University of Hong Kong, Pokfulam, Hong Kong, China
3Institute of Physics, Chinese Academy of Sciences, P.O. Box 603, Beijing 100080, China
(Received 8 December 2000; published 23 March 2001

Recent experiments have shown that some colossal magnetoresig€idtiRematerials exhibit a percolation
transition. The conductivity exponent varies substantially with or without an external magnetic field. This
finding prompted us to carry out theoretical studies of percolation transition in CMR systems. We find that the
percolation transition coincides with the magnetic transition, and therefore the magnetic field has a large effect
on the percolation transition. Using a real-space-renormalization method and numerical calculations for two-
dimensional2D) and three-dimension&BD) models, we obtain the conductivity exponei be 5.3(3D) and
3.3 (2D) without a magnetic field, and 1(BD) and 1.4(2D) with a magnetic field.

DOI: 10.1103/PhysRevB.63.140418 PACS nuni®er75.90:+w, 71.27+a

Colossal magnetoresistand€MR), an unusual large methods. The system consists of three types of lattice sites.
change of resistivity in the presence of a magnetic field, hagach site has spi§; (= =1,0) where denotes the index of a
been extensively studied in ferromagnetic perovskitesite. This model is similar to the site-diluted spin system
manganites. It is well known that the electronic phase dia- used in Ref. 8S=0 implies that the site is empty, meaning
grams of CMR materials are very complex. There are variousccupied by thex=1/2 charge ordered phas®= =1 means
ordering states and phase transitions as the carrier concentthe site is occupied by the ferromagnetic metallic phase with
tion is varied. For example, La,CaMnOs, a typical double up and down magnetizatiodsThe Hamiltonian of the spin
exchange ferromagnetic metal wher0.33, becomes a interaction is Ising-like and is written as
charge ordered insulator with a specific t)Z/pe of electronic
orbital and magnetic orderings wher=1/2 Recently, it _
was demonstrated that a8 _,Pr,CaMnO; (x=3/8) sys- Hs= JUE’D S-S +2i H-S. @
tem, where Pr is chosen to vary the chemical pressure, may
be electronically phase separated into a submicrometer-scaitere(i,j) denotes a pair of the nearest-neighbor sifes,
mixture of insulating regions and ferromagnefidVl) metal- ~ the interaction energy, anid is the strength of the external
lic regions®* Experimental findings of FM clusters and magnetic field. We consider a ferromagnetic interaction, i.e.,
phase separation in CMR materials have also been reporteld>0. In order to investigate transport properties, we assume
in early studies. Electron diffraction and dark-field imaging that the local conductivity between two nearest occupied
on the La_,_,Pr,CaMnO; samples indicate that the insu- Sites is either O for antiparallel sping ( and | T) or 1 for
lating region is a= 1/2 charge ordered phase. This is not aparallel spins {1 and| |) and is zero if one or both sites are
charge congregation type of phase separation, which was ompty. Thus, the conductivity between neighboring sites can
served in slightly doped antiferromagnetic mangafiisesd ~ be expressed as follows
was extensively discussédhe CMR effect was observed in
different samples with 0.24y<0.41, and was explained _ 1, S-S5=1
by percolative transport through the ferromagnetic domains. i~ 0, otherwise.
According to the percolation theory, the conductivity:(p
—po)!, wherep is the concentration of the metallic phase  First, we use the standard Monte-Carlo method to study
andpy is its critical value. In Ref. 3, the exponent was stud-the magnetic properties of the model. Knowing the spin
ied in the presence and absence of an external magnetic fiefdiructure is necessary for the transport studies since the local
and two values are substantially different. Thus, the experieonductivity depends on the spins through E2). The con-
ment shows that the percolative transport in the CMR sysductance calculation is performed on a set of spin configu-
tems depends sensitively on the relative spin orientation ofations produced by the Markov chain. In the Markov chain
adjacent ferromagnetic domains which is controlled by arevery spin configuration is generated from the previous one
applied magnetic field. The goal of this work is to develop aby using the probabilitg™#2"s/(e #AHs+ 1), whereAH is
percolation theory which takes into account the magneti¢che energy difference between these two configurations and
transition in the CMR materials. In particular, we would like 8=1/kgT.!! The calculations are carried out on finite square
to understand what causes the exponent to be so differeand cubic lattices for 2D and 3D systems and the periodic
with or without an external magnetic field. boundary condition is adopted to eliminate the boundary ef-

Based on phenomenological considerations, we studfects. The conductandg for every spin configuration in the
two- or three-dimensiona{2D or 3D) lattice percolation Markov chain is obtained by calculating the total conduc-
models. The conductivity and its critical exponent are calcutance of the resistor netwofk.In the resistor network, the
lated by means of real-space renormalization and numericddcal conductivity between neighboring sites is determined

@
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FIG. 2. (8 The critical temperaturd, as a function of the
concentratiorp in 2D. (b) The critical temperatur@&, as a function
of the concentratio in 3D.

As shown in these plotg,.(p) will approach the Curie tem-
peratureT, for the regular Ising model ag approaches 1.
We find thatT. determined from Fig. 2 is 233or 4.4] for a

2D or 3D system. Both of them are in good agreement with
the values of the regular Ising modél.

From the spin configurations of the system, we can calcu-
late the conductance by using the local conductivity defined
in Eq. (2). In a paramagnetic phase, there is no infinite clus-
ter with spins pointing in the same direction. Hence, accord-
ing to Eq. (2) there is no conducting path throughout the
sample. On the other hand, the first conducting path appears
simultaneously when the magnetization starts becoming non-
zero. Thus, the phase transition from the FM phase to the
paramagnetic phase is accompanied by the metal-insulator

FIG. 1. (a) The normalized spontaneous magnetizatiomas a
function of temperaturd for different concentratiomp in the 2D
model. The unit ofT is set by the interaction strengftikg . From
top to bottom, the concentrations gre- 1.0, 0.9, 0.8, 0.7, 0.6, and

0.5 The calculation is performed on 1000 samples whose sizes a ot . .
100X 100.(b) mas a function off in the 3D model. The calculation (R/”) transition in the conductancehis implies that at zero

is performed on 200 samples whose sizes ave 1@< 10. From top temperature the M tra_nsition occurs at the critical concen-
to bottom, the concentrations ape=1.0, 0.9, 0.8, 0.7, 0.6, 0.5, tration of the percolation thresholdy,. Near the critical
0.4, 0.3, and 0.2. point the averaged conductanGecan be expressed &3
~(p—po)', wheret is the conductance critical exponent for
the transition.

We now discuss the real-space renormalization method.
We start with a 2D system and later extend to a more com-
licated 3D system. The essential physics does not depend
n dimensionality, although numerical numbers do. Consider
triangular lattice in a 2D plane. The choice of a triangular
) ) . - attice is for the convenience of rescaling of the system in the
(p~0) in the percolation model, wheeis the probability real-space renormalization procedure. By enlarging the sys-

of nonzero local conductivity. The small FM islands are well . .S .
separated by the CO phase. Because the spin correlatioﬁ%m by factory3 and grouping every three sites into a “su

between FM blocks are cut off by the CO phase, the spirﬁ Errﬁgz,r o:‘hseit:sumt:ﬁ; gl;i t?r?aIS:pset:r:sz II:? tk;lﬁalzr? N ;‘ s the
orientation for each FM block is random, either up or down. 9 y 9. 9. 2

Therefore. the spontaneous maanetizatiowill be zero at the thin lines are for the original system and the thick lines
' P . 9 : are for the rescaled system. A supersite is regarded as empty
any temperaturd. As p increasesm continues to be zero

until p reachesp, at which the first infinite FM cluster ap- if the majority of the three sites is empty. Thus the concen-

H 3 2
pears. Ifp>p,, a finite spontaneous magnetization appearstratlon of the system can be expressedpasp* +3p*(1

for T<T.(p) with T.(p) the critical temperature at concen- . p)_ (Ref. 13. Near _the crmcal Poinpo Ot'5' on the metal

: . . lic side, G can be written a&=Gy(p—py)", where the con-
trationp. In Figs. Xa) and Xb) we plot the normalized mag- . . .

o ; . . stantGy is proportional to the conductance of the unit cell.
netizationm as a function of temperaturé with different

concentration probabilities for 2D and 3D systems, respec- For tt\e enlarged system this relation k_)e(_:orﬁ?és=Go(p
tively, calculated using the Monte-Carlo method. The inter-~ Po) - In @ 2D system the con{ductance is independent f)f the
action strengthl is set to unity. It can be seen that when the SyStem size and we ha@=G'. Thus,t=1In(G,/Go)/In[(p
temperature increases is reduced and reaches zero at —Po/P—Po)l- If the spin degree of freedom is frozen, the
T.(p). From magnetization data with different size Samlo|esconductance of elementary cell is inversely proportional to
and through finite-size scaling, we can determine the criticathe size of the cell, hence=In(y/3)/In(3)=1.35. This value
temperature. In Figs.(2) and Zb) we plot the relation be- s very close to the exact value bf4/3 in the standard 2D
tween the critical temperatuiie.(p) and the concentration percolation model? When taking into account the spin de-

by Eg. (2). The total conductance is calculated for many
samples to obtain the average conductance.

When the charge ord€é€0O) phase is dominant in some of
the CMR materials, most sites are empty according to ou
model. Thus, most of the conductivities between neighborin
sites are zero, corresponding to the low concentration Iimi(‘?i
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FIG. 3. lllustration of renormalization in actriangle lattice.

grees of freedom, as we discussed aboveptheoint is also
the critical point for the spontaneous magnetization. The
conductanc&, (or Gg) is now associated with spin configu-
rations. The spin dependence comes from the fact®qab
proportional to the average of conductivity between two
nearest-neighbor sites which is spin dependent,

FIG. 4. The normalized conductivitg as a function of tempera-
ture T in a 2D model. From top to bottom, the concentrations are
p=1.0,0.9,0.7,0.6, and 0.5. Inset: I&yvs log(p—py) shows a
linear behavior with a slope-3.5.

6,— 0, Fig. 4 we show the Ir®) versus Inp—py). They exhibit a
Go~(crij>~<005( 5 )> linear dependence and the slope of the curve, corresponding
to the exponent, is roughly 3.5. This value is in good agree-
1 (= 27 7 27 ment with the estimation from the renormalization group
= Kfo dé, JO de; JO dé; JO dé; consideration although it is obtained from a different type of
lattice structure. In Table | we list the results of this work
- - 0;j and compare them with the previous studies of the standard
X @~ AmScostig=pmScosd; COE{;)- (3)  percolation theor# and experimental exponents in CMR
materials** The experimental exponemy (or t3) was ob-

The conductivity expression between the nearest-neighbd@ined in the absenc@r presenceof an external magnetic
spin aj; ~cos(;/2) comes from the double exchange modelfield.

where6;; is the angular difference between sp§sandS; , Before summary, we would like to make a couple of com-
which satisfie® ments.(i) In order to calculate the conductivity exponent, we

have to determine the dependencesgf[see Eq(3)] on the
cos6;; = cosé, cosh; +sind; sing; co p— ¢j).  (4) magnetizatiorm, and the double exchange model is used to

achieve that goal. However, the double exchange may not be
(6;,¢;) denotes the orientation of spf. Ais a normaliza- the origin of the ferromagnetism in doped manganites, as
tion constant. From the above equation, it is easy to showhown in a recent work® This might explain some of the
thatG,~m?. Becausen can be written as~ (p— p,), > we discrepancy between the experimental and our theoretical
finally get the conductance critical exponent in 2D triangularvalues in the conductivity exponent. We should also mention
lattice ast’=1.35+2=3.35. that the values from the two experimental groups are not in

In the 3D case, we consider the normal cubic lattice. The

elementary vectors of the enlarged lattice is just two times of TABLE I. The critical exponent for 2d and 3 casesp,, and

those of the original onééx’,éy’,éz’}z{ZéX,Zéy,Zéz}. In Pc3 are percolation threshold ford2and 3, respectivelyty andt;
this Casep’22ﬁ=4cgp”(l—p)87”, from which we con- &€ the critical exponents for tlledimension model without or with

_ _ . . spin effects. Previous results are from Ref. 14. Experiment | is from
clude Fhatp0—0.395 andt=1.7 W|thout_ spin effects. After Ref. 3 and Experiment Il is from Ref. 4.
the spin degrees of freedom are considered, the fori@yla

~m? is still satisfied. But in a 3D casen has m~(p
—po) 7% So the critical exponertt =1.7+2x1.79=5.3.

P2 Pes t2 ts tp 3

In Fig. 4 we show the numerical results of 2D conduc-Previous results 05 031 133 1.9
tanceG. The 3D calculation has not been done because ofxperiment | 2.6 6.1
computational limit. The points with the steepest drop areExperiment II 2.6
defined as the critical points for the metal-insulator transi-rRenormalization method 05 037 135 17 3.3 5.3
tion. These points are consistent with the magnetic criticaNumerical results 051 032 1.30 35

points (see Fig. 1, as we discussed before. In the inset of

140418-3



RAPID COMMUNICATIONS

YE XIONG, SHUN-QING SHEN, AND X. C. XIE PHYSICAL REVIEW B63 140418R)

good agreement with each other as seen in Tablg)IWe  exponents. The conductivity exponent has been obtained us-
have neglected the quantum effects in this work. This mighing real-space renormalization and numerical calculations.
be justified becaus@&, is relatively high in these samples. The exponent is found to be quite different whether the mag-
Developing a semiclassical transport theory in this problemnetic transition is considered. This finding explains the large
is a difficult task because of the finite-phase coherencexponent discrepancy in some of the CMR materials in the

length. There are attempfof using the semiclassical theory presence or absence of an external magnetic field.
to understand the two-dimensional metal-insulator transition.

In summary, we argue that the percolation threshold cor-
responds not only to the appearance of an infinite metal clus- This work was supported by DOE and a RGC grant of
ter, but also to the phase transition from PM to FM. ThisHong Kong. We thank Junren Shi for many helpful discus-
coincidence of two phase transitions renormalizes the critica$ions.
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