5,838 research outputs found

    Very Low-Mass Objects in the Coronet Cluster: The Realm of the Transition Disks

    Full text link
    We present optical and IR spectra of a set of low-mass stars and brown dwarfs in the Coronet cluster (aged ~1Myr), obtained with the multifiber spectrograph FLAMES/VLT and IRS/Spitzer. The optical spectra reveal spectral types between M1 and M7.5, confirm the youth of the objects (via Li 6708 A absorption), and show the presence of accretion (via Halpha) and shocks (via forbidden line emission). The IRS spectra, together with IR photometry from the IRAC/MIPS instruments on Spitzer and 2MASS, confirm the presence of IR excesses characteristic of disks around ~70% of the objects. Half of the disks do not exhibit any silicate emission, or present flat features characteristic of large grains. The rest of the disks show silicate emission typical of amorphous and crystalline silicate grains a few microns in size. About 50% of the objects with disks do not show near-IR excess emission, having "transitional" disks, according to their classical definition. This is a very high fraction for such a young cluster. The large number of "transitional" disks suggests lifetimes comparable to the lifetimes of typical optically thick disks. Therefore, these disks may not be in a short-lived phase, intermediate between Class II and Class III objects. The median spectral energy distribution of the disks in the Coronet cluster is also closer to a flat disk than observed for the disks around solar-type stars in regions with similar age. The differences in the disk morphology and evolution in the Coronet cluster could be related to fact that these objects have very late spectral types compared to the solar-type stars in other cluster studies. Finally, the optical spectroscopy reveals that one of the X-ray sources is produced by a Herbig Haro object in the cloud.Comment: 51 pages, 13 figures, 10 table

    Measuring Organic Molecular Emission in Disks with Low Resolution Spitzer Spectroscopy

    Full text link
    We explore the extent to which Spitzer IRS spectra taken at low spectral resolution can be used in quantitative studies of organic molecular emission from disks surrounding low mass young stars. We use Spitzer IRS spectra taken in both the high and low resolution modules for the same sources to investigate whether it is possible to define line indices that can measure trends in the strength of the molecular features in low resolution data. We find that trends in HCN emission strength seen in the high resolution data can be recovered in low resolution data. In examining the factors that influence the HCN emission strength, we find that the low resolution HCN flux is modestly correlated with stellar accretion rate and X-ray luminosity. Correlations of this kind are perhaps expected based on recent observational and theoretical studies of inner disk atmospheres. Our results demonstrate the potential of using the large number of low resolution disk spectra that reside in the Spitzer archive to study the factors that influence the strength of molecular emission from disks. Such studies would complement results for the much smaller number of circumstellar disks that have been observed at high resolution with IRS

    High Spatial Resolution Observations of Two Young Protostars in the R Corona Australis Region

    Full text link
    We present multi-wavelength, high spatial resolution imaging of the IRS 7 region in the R Corona Australis molecular cloud. Our observations include 1.1 mm continuum and HCO^+ J = 323 \to 2 images from the SMA, ^{12}CO J = 323 \to 2 outflow maps from the DesertStar heterodyne array receiver on the HHT, 450 μ\mum and 850 μ\mum continuum images from SCUBA, and archival Spitzer IRAC and MIPS 24 \micron images. The accurate astrometry of the IRAC images allow us to identify IRS 7 with the cm source VLA 10W (IRS 7A) and the X-ray source X_W. The SMA 1.1 mm image reveals two compact continuum sources which are also distinguishable at 450 μ\mum. SMA 1 coincides with X-ray source CXOU J190156.4-365728 and VLA cm source 10E (IRS 7B) and is seen in the IRAC and MIPS images. SMA 2 has no infrared counterpart but coincides with cm source VLA 9. Spectral energy distributions constructed from SMA, SCUBA and Spitzer data yield bolometric temperatures of 83 K for SMA 1 and \leq70 K for SMA 2. These temperatures along with the submillimeter to total luminosity ratios indicate that SMA 2 is a Class 0 protostar, while SMA 1 is a Class 0/Class I transitional object (L=17±617\pm6 \Lsun). The ^{12}CO J = 323 \to 2 outflow map shows one major and possibly several smaller outflows centered on the IRS 7 region, with masses and energetics consistent with previous work. We identify the Class 0 source SMA 2/VLA 9 as the main driver of this outflow. The complex and clumpy spatial and velocity distribution of the HCO^+ J = 323 \to 2 emission is not consistent with either bulk rotation, or any known molecular outflow activity.Comment: 31 pages, 8 figures, Accepted to Ap

    petitRADTRANS: a Python radiative transfer package for exoplanet characterization and retrieval

    Full text link
    We present the easy-to-use, publicly available, Python package petitRADTRANS, built for the spectral characterization of exoplanet atmospheres. The code is fast, accurate, and versatile; it can calculate both transmission and emission spectra within a few seconds at low resolution (λ/Δλ\lambda/\Delta\lambda = 1000; correlated-k method) and high resolution (λ/Δλ=106\lambda/\Delta\lambda = 10^6; line-by-line method), using only a few lines of input instruction. The somewhat slower correlated-k method is used at low resolution because it is more accurate than methods such as opacity sampling. Clouds can be included and treated using wavelength-dependent power law opacities, or by using optical constants of real condensates, specifying either the cloud particle size, or the atmospheric mixing and particle settling strength. Opacities of amorphous or crystalline, spherical or irregularly-shaped cloud particles are available. The line opacity database spans temperatures between 80 and 3000 K, allowing to model fluxes of objects such as terrestrial planets, super-Earths, Neptunes, or hot Jupiters, if their atmospheres are hydrogen-dominated. Higher temperature points and species will be added in the future, allowing to also model the class of ultra hot-Jupiters, with equilibrium temperatures Teq2000T_{\rm eq} \gtrsim 2000 K. Radiative transfer results were tested by cross-verifying the low- and high-resolution implementation of petitRADTRANS, and benchmarked with the petitCODE, which itself is also benchmarked to the ATMO and Exo-REM codes. We successfully carried out test retrievals of synthetic JWST emission and transmission spectra (for the hot Jupiter TrES-4b, which has a TeqT_{\rm eq} of \sim 1800 K). The code is publicly available at http://gitlab.com/mauricemolli/petitRADTRANS, and its documentation can be found at https://petitradtrans.readthedocs.io.Comment: 17 pages, 7 figures, published in A&

    Influence of Surface Irregularities on the Dynamic Response of Minor Highway Bridges

    Get PDF

    Active Vibration Control of a Monopile Offshore Structure:part one - pilot project

    Get PDF

    Properties and occurrence rates of KeplerKepler exoplanet candidates as a function of host star metallicity from the DR25 catalog

    Get PDF
    Correlations between the occurrence rate of exoplanets and their host star properties provide important clues about the planet formation processes. We studied the dependence of the observed properties of exoplanets (radius, mass, and orbital period) as a function of their host star metallicity. We analyzed the planetary radii and orbital periods of over 2800 KeplerKepler candidates from the latest KeplerKepler data release DR25 (Q1-Q17) with revised planetary radii based on GaiaGaia~DR2 as a function of host star metallicity (from the Q1-Q17 (DR25) stellar and planet catalog). With a much larger sample and improved radius measurements, we are able to reconfirm previous results in the literature. We show that the average metallicity of the host star increases as the radius of the planet increases. We demonstrate this by first calculating the average host star metallicity for different radius bins and then supplementing these results by calculating the occurrence rate as a function of planetary radius and host star metallicity. We find a similar trend between host star metallicity and planet mass: the average host star metallicity increases with increasing planet mass. This trend, however, reverses for masses >4.0MJ> 4.0\, M_\mathrm{J}: host star metallicity drops with increasing planetary mass. We further examined the correlation between the host star metallicity and the orbital period of the planet. We find that for planets with orbital periods less than 10 days, the average metallicity of the host star is higher than that for planets with periods greater than 10 days.Comment: 14 pages, 13 Figures, Accepted for publication in The Astronomical Journa

    Dust rings and filaments around the isolated young star V1331 Cygni

    Get PDF
    We characterize the small and large scale environment of the young star V1331 Cygni with high resolution HST/WFPC2 and Digitized Sky Survey images. In addition to a previously known outer dust ring (~30'' in diameter), the HST/WFPC2 scattered light image reveals an inner dust ring for the first time. This ring has a maximum radius of 6.5'' and is possibly related to a molecular envelope. Large-scale optical images show that V1331 Cyg is located at the tip of a long dust filament linking it to the dark cloud LDN 981. We discuss the origin of the observed dust morphology and analyze the object's relation to its parent dark cloud LDN 981. Finally, based on recent results from the literature, we investigate the properties of V1331 Cyg and conclude that in its current state the object does not show suffcient evidence to be characterized as an FU Ori object.Comment: 15 pages ApJ preprint style including 3 figures, accepted for publication in ApJ (Feb. 2007
    corecore