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Stochastic Structural Dynamics, Spencer & Johnson ( eds) © 1999 Balkema, Rotterdam, ISBN 90 5809 024 8 

Influence of surface irregularities on the dynamic response of minor highway 
bridges 

S. R. K. Nielsen & P. H. Kirkegaard 
Department of Building Technology and Structural Engineering, Aalborg University, Denmark 

ABSTRACT: In the present paper the effect on the dynamic amplification factor of bridge response from the 
surface irregularities is investigated. A numerical 3D model has been formulated for a 48t Scania truck. Further, 
a characteristic minor highway bridge has been selected, and a numerical FEM-model has been formulated. Based 
on measured data, a 2D spectral description of the road roughness is established which models the deterministic 
trends in transversal (wheel tracking) as well as longitudinal direction (some long-waved tendency). Further, the 
bumps/expansion joints at the approaches to the bridge are included into the model. Based on a Monte Carlo 
simulation study the mean value and the variational coefficient of several dynamic amplification factors have been 
calculated assuming the parameters describing the vehicle and the bridge deterministic at characteristic values. 
The overall conclusion from the study is that the most important impact on the magnitude of the dynamic 
amplification factor stems from short waved bumps. 

1 INTRODUCTION 

The determination of the dynamic response of a bridge 
resulting from the passage of a vehicle across the span 
is a problem of great interest which can be seen from 
the literature reviews given in (Kirkegaard et al. 
1997 a, Paultres et al. 1994). The forces that produce 
the stresses in a bridge under dynamic loading are a 
result of the dead load of the vehicle and the bridge 
and the vehicle -bridge interactive forces. The forces 
depend on many factors such as the natural frequen
cies and damping ratios of the vehicle and bridge, the 
vehicle suspension system, speed of vehicle, the traffic 
intensity and the road surface irregularities of the 
bridge deck (e.g. see Green et al. 1996, Inbanathan et 
al. 1988). Road surface irregularities have been 
measured in several studies (e.g. see Dodds et al. 
1973, Honda et al. 1983, Marcondes 1992). It has been 
found that most pavement profiles have very similar 
power spectral densities and, further, by plotting the 
spectral densities versus the wave number in a 
double-logarithmic scale, it becomes obvious that all 
kinds of road pavements can be characterized by 
similar functions. This function may be approximated 
sufficiently by a straight line (Mathieu et al. 1991). 
Road surface roughness on bridges have been mea-
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sured only rarely. Therefore, most studies done on the 
dynamic behavior of bridges have used the spectral 
densities, which have been found for road surface 
roughness. In the paper by Honda et al. (1982), the spec
tral densities of road surface roughness on bridges 
have been found to be modeled in the same manner as 
the spectrum of surface roughness on general roads. 
However, all the proposed spectral densities of road 
surface roughness are only one-dimensional, i.e. the 
spectral densities model only road profile in the longi
tudinal direction of the road and not in the transverse 
direction. The present paper establishes a 2D spectral 
description of the road roughness surface based on 
measurements from a Danish road. A part of the 
measured road includes a part of a bridge wherefore 
the irregularities due to the abutments also have been 
taken into the stochastic description of the road. The 
paper is organized in the following sections. Section 2 
gives a description of the measured data. Next, in 
section 3, a model of a two-dimensional spectral 
density function of road surface roughness is given. 
Section 4, presents a Monte Carlo simulation study 
where the stochastic model is used to investigate the 
effect on the dynamic amplification factor of bridge 
response from the surface irregularities. At last, in 
sections 5 and 6, references and conclusions are given. 



2 LASER-BASED MEASUREMENTS OF ROAD 
SURFACES 

The measurements of the road irregularities 
considered in this paper have been obtained using a 
Profilograph. 

2.1 Presentation of the Measured Raw Data 

In 1991, the Danish Road Directorate introduced 
profilometric measurements of pavement surfaces by 
purchasing its first Profilograph. The concept of the 
Profilograph is a system with several lasers positioned 
on a vertical adjustable beam in front of a vehicle, 
measuring a point on the pavement surface at every 5 
mm in the longitudinal direction. The pavement's 
transverse profile is measured in points according to 
the lasers position on the beam covering a m~imum 
width of 3.5 meters. A data series obtained by the 
Profilograph with a measuring width of 3.2 meters has 
been provided by the Danish Road Directorate (see 
Schrnidt et al. 1996). The data series are measured on 
the left side of the road Asvej in the municipality of 
Roskilde on the island Zealand. Figure 1 shows the 
measured road profile after the mean values for each 
laser in longitudinal direction have been removed. In 
the longitudinal direction, estimates of the road 
irregularities are given for each 0.1 m, while in the 
transverse direction, estimates are given corresponding 
to the laser positions. It is seen that the measured road 
profile has large overall variations in the profiles 
together with the overall roughness. Figure 2 shows 
the measured road profile after these trends have been 
removed in the transversal direction. A typical wheel 
tracking pattern is seen. Next in figure 3 the Power 
Spectral Density (PSD) is shown versus the wave 
number in a double-logarithmic scale. It becomes 
obvious that the road irregularities can be 
approximated sufficiently by a straight line in this 
double-logarithmic scale. In order to investigate the 
surface roughness closer (wave lengths< 10 m) the 
measured data have been fi ltered using a 6'th order 
highpass digital elliptic fi lter with 0.5 decibels of 
ripple in the passband and a stopband 20 decibels 
down. Again, it became obvious that also the filtered 
road irregularities could be approximated sufficiently 
by a straight line in this double-logarithmic scale. 
However, it was seen that the slop for the filtered road 
profiles was smaller than for the unfiltered road 
profiles. Further, by considering figure 2 some more 
pronounced irregularities can be seen in the right side 
of the road at positions around 75 m and 125, 
respectively. These could be bumps/expansion joints 
at the approaches to the bridge. 
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Figure I . The measured road profile from bridge. Laser no I 
the left side of the road, laser no. 25 in the right side of the roa 
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Figure 2 The measured road profile from bridge. Laser no I i 
the left side of the road, laser no. 25 in the right side of the roac 
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Figure 3 PSD of the measured road profile from bridge showr 
as a function of laser position and wave number in a doubl< 
logarithmic mapping. 
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In order to investigate the correlation in transversal 
direction between the time serieS' measured with the 
25 lasers the sample correlation coefficient function 
has been estimated. The estimated correlation 
coefficient functions for different directions were 
compared and based on a visual comparison the 
surface is said to have properties which are 
covariance homogeneous and isotropic. 

3 STOCHASTIC MODEL OF SURFACE 
IRREGULARITIES 

The aim of the following section is to establish a 
stochastic model for the surface irregularities. This 
model will model , based on the observations from 
figures 1-3 , the deterministic trends in transversal 
(wheel tracking) as well as longitudinal direction 
(some long-waved tendency). Further, the 
bumps/expansion joints at the approaches to the 
bridge and the stochastic nature of the surface 
roughness will be included into the model. The 
stochastic model presented is based on a (x1,x2,x3) 

coordinate system see figure 4 placed on a horizontal 
smooth base surface of the road. The x1 - axis is 
directed along the longitudinal and the x2 - axis along 
the transversal direction. The origo is placed at one 
side of the road, so (xJox2) E ] -oo , oo [ x [0, B). B 
indicates the width of the road. 
The surface irregularities from the base line are 
modelled by the stochastic process { Z(x1,x~) E [ 0, L] 
x [0, B)} . This quantity is measured at N2 discrete 
positions in the transverse direction equal to the 
number of lasers. In x1 -direction the measurement 
points are sampled with the distance ~. = ..!::... where 
L is the measurement length and N, is the ~umber of 
samples. 

For Z(x1, x2 ) the following model is applied 

Z(x1,x2) = 11z(x1,x2) + az(x2)Y(x1,x2) (1) 

J.1z(x1,x2) = E[Z(x1, x2 )] signifies the mean value 
function specifying the deterministic trends in the 
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Figure 4 Geometry for stochastic model 
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Figure 5 Graphical interpretation of f.1 z(x1,x2) and Oz(x2) 

surface irregularities due to small hills or other low 
frequency trends in the longitudinal direction, 
expansion joints at the abutments of the bridge and 
wheel tracking in the transverse direction. The 
standard deviation a£x2) = (E[(Z(x1, x2 ) - J.iz{x,,x)l 
]) v, is a measure of the magnitude of the surface 
irregularities on the top of the deterministic trends. 
This quantity is assumed to be homogeneous in the 
longitudinal direction, i.e. corresponding to no x 1-

depending. The variation is believed to be larger at the 
"hills" than in the "valleys" due to polishing from 
traffic as sketched in figure 5. 

Finally, { Y(x1,x2) E [ 0, L] x [0, B)} is a zero mean 
homogeneous isotropic Gaussian stochastic process 
with variance d .,(x1, x2) = 1. The extend of low 
frequency trends and wheel tracking cannot be 
foreseen in advance. Hence pzfx1,x2) and oz(.x;) should 
be considered as random variables generated by a 
number of basic variables entering the models of these 
quantities, · which will be specified below. The 
indicated expectation for J.1z{x1,x2) and az(x2) should 
then be interpreted as conditioned on these basic 
variables. The mean value function of the road surface 
is modelled as a sum of independent deterministic 
trends in the x1 and x2 direction, i.e. p z(x1,x2) = 
p2

1n(x1,) + J.1z121(x2). The deterministic trend in the xr 
direction has been selected in figure 6a. Half-sine 
irregularities of amplitude B 1, B2 , B/ and B2 ' and the 
wave-length terms L1, ~. L1 ' and~' are present on the 
approaches to the bridge. The distances between the 
irregularities are denoted L0 and L0 ', respectively. The 
irregularities with amplitudes B2 and B2 ' are modeling 
the expansion joints whereas the irregularities with 
amplitudes B1 and B/ are supposed to represent some 
long-waved tendency in the longitudinal road profile, 
i.e. L1, L/ >> L2, L2' • The basic variables L0, L1, 

L2.B1, B2. L0 ', L/, L2 ', B/ , B2 ' are assumed to be 
mutually independent variables. L0 and L0' are 
identically Rayleigh-distributed, L0,L0 ' - R( a~ ). 
Similarly, B 1,B/- R( a! ) . B2,B2'- R( a! ) , L 1,L /-

2 2 I 2 • . 
R( a L)• L2,L2' - R( a~ ) are supposed to be pairwise 
identically distributed stochastic variables. 

The model for J.1z{x2 ) has been sketched in figure 6b. 
Only the wheel-tracking in one lane is shown.pzfx) is 
assumed to be symmetric around x2 = B/2. The profile 
is defined by the heights A0 and A 1 , assuming a cubic 
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Figure 6a,b Model of mean-value function ~z(X 1 ,x2) = ~z(l1(x 1 ,) 
+ ~z(21(xl) 

spline between the node-points. Further, it is assumed 
that the term A0 is deterrninistically related to A1 

according to 

(2) 

A, - R( a~ ) is a Rayleigh-distributed random variable 
independe~t of the random variables generating the 
longitudinal profile J1z(X1). The parameter cx0 is a 
deterministic decreasing function with age and traffic 
amount.The standard deviation in . the transverse 
direction is modelled as shown in figure 7. Only one 
lane is shown and O'z(x2) is assumed to be symmetric 
around x2 = B/2 as was the case for J1z(x2) . C, is 
assumed to represent the surface irregularities of the 
new laid road which is assumed to be Rayleigh
distributed C1- R( a~ ), and is assumed to be 

I 

independent of the basic random variables generating 
Jl/.XJ,x2). Co and c2 are reduced surface irregularities 
due to polishing. These are modelled as follows 

y0 E [0,1) 

y2 E (0,1) 
(3) 

y 0 and y 2 are assumed to be deterministic decreasing 
functions of the ageing of the pavement and the traffic 
amount. 
Initially, samples of Jl/.XJ>x2) and az(x2) are generated 
upon generating independent samples of the quantities 
entering the mqdels of these quantities. Assuming a 

516 

x, X, 

I B/4 I 

Figure 7 Model of standard deviation oz{x2) 

realization y(x1,x2) of the field { Y(x1,x2) } is available, 
realizations of the road surface then become Z(x1,x2) = 
Jl /.x1,x2) + azfx2) y(x1,x2), cf. (1). 

In order to calculate realizations of the stochastic 
field { Y(x1,x2) E [ 0, L) x [0, B)} the following 
stochastic model is applied 

N, N, [ ~ X X) ] 
= E LAmnCOS 2 m...l.. +n-.3.. - iJ>mn + 

m •/ n=l L B 

B coJ2J m x, - nx2 ) - 'P ] 
mn ~l "\ L B mn 

(4) 

In ( 4) Amn - R( a~ ) and Bmn - R( a~ ) are Rayleigh 
mn mn 2 

distributed random variables with the parameters a A 
2 -and a8 , and <D - U(0,2n), 'I' - U(0,2n) are 

mn mn mn 
uniformly distributed over the interval [0, 2n]. All the 
random variables A , B , and <D , 'I' in ( 4) are mn mn mn mn 
mutually independent. If A- R( a2

) and <D - U(0,2n) 
it is well-known that X = A cos(x - <D) becomes 
normal distributed with zero mean and variance a2

, i.e 
X - N(O,a2

). Hence, (4) consists of a sum of 
mutually independent zero mean independent normal 
variables. { Y(x1,x2)} is then a zero mean Gaussian 
process from the various mixing theorems 
generalizing the central limit theorem to stochastic 
processes. The auto-covariance function of (4) 

becomes 

The straight forward insertion of (4) into the left -hand 
side of (5) results in a four-double sum. However, only 
the diagonal terms in this four-double sum retains, 
using the mutual independence of the involved 
stochastic variables. The homogeneity of 
{ Y(xl'x

2
)} follows from the last statement of (5). The 

following 2-dimensional Fourier transformation 
applies 



Kr/.~.(zJ = J jei((,k, ·(Jc,!syj.kllk2)dk1dk2 ) 

Syj.k,.k2) = 4~ [!! -i((,k, •(Jc,!Kyj.~.(z)d~d(z 
(6) 

(6) is known as the so-called Wiener - Khintchine 
relations. Syy(,k1,f0) is termed the auto-spectral density 
of the surface irregularities process { Y( x,:x2)}. Since, 
both S yy(,k1,k2) and Kyy{~ , ,~2) are real, the imaginary 
parts of e.,.,(,t,·(,>,> cancel, and may be replaced by cos 
(~ 1k1 +~1k2) • The first part of (6) can then be written 

Kyy(~1 .~2) = J J cos(k1 ~ 1 +k1~2)Syy(kpk2)dx1 dx2 = 

j j [2cos(k1 ~ 1 )c~s(kz~1)( Syy(kpkz)+Syy( - k1,k2)) dk1dk2 -

0() 

2sin(k1 ~ 1 )sin(k2~2)( Syy(k1,k2)- Syy( -k1,k2)) dk1dk2] :::: 

I: ~ [2cos( 2nm~) cos( 21tn ~2) ( S rfm6kl'nl1k2) + 
m• l n• l L B 

Syf - m6k1'nl1k2)) 11k16k2 - 2sin( 2nm ~)sin( 2nn;) 

( Syy(ml1k1,nl1k2) - Syy( - ml1k1,n6k2))11k111k2] 

where 

2n 
L 

2n 
B 

(7) 

(8) 

Upon comparison (5) and (7) the following 
expressions are obtained for the parameters a~ 

d 2 -an aaM. 

m~ J, ... ,N1) 

n-I, ... ,N2 

(9) 

Assuming Syy(k1,k2) to be known, the application of 
(4) can now be explained in the following steps: 

1) Initially, the parameters a~ and a! are calcula 
ted from (9). nlll mn 

2) For all (m,n) generate independent samples of the 
Rayleigh distributed random variables ~" - R( a~ ) 
and Bmn - R( a!m.) as well as the mutually independent 
uniformly distributed variables <ll - U(0,2n) 'I' mn , mn 

- U(0,2n) by means of a random generator. 
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3) The corresponding realizations y(x
1 
,x2) of { Y(x

1 
,x2)} 

are calculated by (4). 

Assuming a one-sided one-dimensional auto-spectrum 
sy(k) of the surface irregularities is known from 
measurements and the field { Y(x

1 
,x

2
)} is assumed to 

be known, a relationship between Syy(k1,k2) and sy(k) 
has to be established. The one-dimensional auto
covariance function for surface irregularities along the 
x 1 - axis for a fixed x2 becomes 

kyy(~1 ) = E[Y(xl'x2)Y(x1 +~l'x2)] = Kyy(~ 1 .0) (10) 

Similar to (6) this function admits the mutual Fourier 
transforms 

) (11) 

syy(,k) = syy(, -k) = s •yy(k) signifies the double-sided one
dimensional auto-spectrum. This is related to the two
dimensional auto-spectrum defined in as follows 

(12) 

·Due to the symmetry properties kyy(~) = kyy( -~) and 

Syy(k) = Syy( -k), (12) can be replaced by the mutual 
cosine-transforms 

kyy( () = Jos(k()s.jk)dk ) 

2 0 .. 

s.jk) = 7r Jos(k()ky.) ()d( 

(13) 

0 

s y(k) = 2s yy(k) , k >0 (14) 

Instead of the (x1,x 2 ) coordinate system an arbitrary 
rotated (x '1,x '2) system is considered, see figure 8 

Now, S'yy(k'1,k'2) signifies the auto-spectrum 
measured in the rotated coordinate system. If 
S'yy(k'1,k'2) = Syy(k'1,k'2) the random Gaussian field is 
termed isotropic. In this case Syy(k1,k2) only depends 



;i 
,~ 
'~ 

i ,, 

.. 
•.. 

.. ~ 

x', 

Figure 8 Definition of rotated coordinate system 

I 

on k1 and k2 via the magnitude k = lkl = (k1
2 

• ki)2 of the 
wave-number vector, i.e. Sr/,.k1,k2) = Sr/,.k). Based on 
the analysis in section 2 such an assumption may be 
adopted for the present field. Similarly, the auto
covariance function Kn('~ 1 .~2) does only depend on the 
separation distance ~ = 1~1 between the coordinate 
points, i.e. Kn-{~ 1 .~2) = Kvv(~). Upon evaluation the 
auto-spectrum in polar coordinates one has 

~ 2Ir 

S lk) = - 1-j!K 1 ()e -ik·f(d(dr/> 
YY' 

4
,-? j"Y 

0 0 

~ 2Ir 

=-
1-JKr/ () j:os(k(coscj;)drjxi( (15) 

4 -r?o 0 

where <!> is the angle between the vectors ~ and k , and 
Jo(x) is the Bessel function of zero order and 1st kind. 
Kyy(~) specifies the covariance between 2 points with 
the spacing~. and is in principle equal to the measured 
one-dimensional auto-covariance function kyy(~). 
Hence, (15) provides a relation between the two
dimensional auto-spectrum of an isotropic field and 
the one-dimensional auto-covariance function. ( 15) 
shows that kr/..~) and 27t Syy(k) are mutual Hankel 
transforms. The inverse relation then reads 

kr/ () = 2 1r jlo(k()Syjk)dk (16) 
0 

Assume that kvv(~) can be written 

k:O ·?cl -','cos(ej<ll 

j; cJ 

(17) 
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where c1, d1 and e1 are real constants. Then (15) 
becomes 

(18) 

At the derivation of (18) the following version of the 
Lipschitz integral has been used, Watson (1966) 

(19) 

(18) is the expression for Sn(k1,k2) searched for. 

4EXAMPLE 

The proposed stochastic model for the surface 
irregularities has been used in a study of the effect on 
the dynamic amplification factor of bridge response 
from the surface irregularities. A numerical 3D model 
has been formulated for a 48t Scania truck. Further, a 
charateristic minor highway bridge has been selected, 
and a numerical FEM-model has been formulated, 
see (Kirkegaard et al. 1998) for details. Based on a 
Monte Carlo simulation study the mean value and the 
variational coefficient of dynamic amplification 
factors have been calculated assuming the parameters 
describing the vehicle and the bridge deterministic at 
characteristic values . 

First, the expression in eq. (17) is fitted to the mean 
of the three correlation coefficient functions at points 
laying on a line in the transversal direction , the 
longitudinal direction and with an angle of 45 degrees, 
respectively. This calculation is performed using 
constr.m from the MATLAB Optimization Toolbox, 
Mathworks. Next a realization y(x1,x2) of the field 
{ Y(x1,x2) } is calculated as described in section 3. A 
realization y(x1,x2) of the field { Y(x1,x2) } is then 
obtained from eq.(l) using the values of the basic 
varibles in table 1 and the models of the mean-value 
function and standard deviation given in figures 6 and 
7, respectively. 

An PSD obtained using the values in table 3.1 have 
been shown to model the PSD of the measured data 
very well , see (Kirkegaard et al. 1997b). 

In the simulation study following simulation 
scenarios have been considered for a 48t Scania truck 



Table I Statistical characteristics of basic variables. 

Basic Variabel (X) Distribwion Standard Deviation (ox ) 

Wave length (L1) Rayleigh 50.0m 

Wave length (L2) Rayleigh 0.50 m 

Wave length (L1') Rayleigh 50.0 m 

Wave length (~') Rayleigh 0.50 m 

Distance Cl..v) Rayleigh lO.Om 

Distance (1 ... 0') Rayleigh IO.Om 

Amplitude (81) Rayleigh 0.01 m 

Amplitude (82) Rayleigh 0.002 m 

Amplitude (8 1') Rayleigh 0.01 m 

Amplitude (8 2') Rayleigh 0.002 m 

Scale factor ( cx0) Deterministic 8 

Scale factor ( Yu) Deterministic 6 

Scale factor ( y2) Deterministic 3 

Profile height (A1) Deterministic 0.003 m 

Irregularity height Deterministic 0.001 m 
(C,) 

Table 2 Mean and COY results for simulation scenario 1. 

Speed DAFof DAF of moment DAF of shear 
{km/h) moment at at intermediate force at end 

mid-span support Sll£1l.Orl 

50 1.024 (0.2 1 %) 1.023 (0.21 %) 1.012 (0.20 %) 

90 1.064 (0.44 %) 1.054 (0.42 %) 1.041 (0.15 %) 

Table 3 Mean and COY results for simulation scenario 2. 

Speed DAFof DAF of moment DAF of shear 
(km/h) moment at at intermediate force at end 

mid-span support support 

50 1.008 (0.80 %) 1.0 I 0 (0.45 %) 1.022 (0.5 1 %) 

90 1.084 (2.36 %) 1.077 (2.34 %) 1.063 (2 .13 %) 

Scania vehicle acting on the bridge (speed = 50 and 
90 km/h): 

1) Only roughness (second part of (1)) is considered. 

2) Only bumps (first part of (1)) is considered. 

3) Bumps and roughness are considered. 

4) Bumps and roughness are considered and the truck 
is moving 1 m in the transversal direction. 
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For each simulation the dynamic amplification of 
the maximum total moment in the longest span of the 
bridge, the total moment over the intermediate 
columns and the total maximum shear force at the 
supports have been estimated. The dynamic 
amplification factor (DAF) is taken as the ratio of the 
maximum total response and the static response. The 
mean value and the coefficient of variation (COY) of 
the DAF of the different response quantities have been 
estimated for 50 crossings. Tables 2, 3, 4 and 5 show 
the results for the different scenarios, respectively. It 
is seen that the obtained DAFs are relatively small. 
However, the mean value of the DAFs compares very 
well with the results from the literature, see e.g. 
(K.irkegaard et al. 1997a) and (Kirkegaard et al. 1998). 
The tables show that the most important impact on the 
magnitude of the dynamic amplification factor stems 
from short waved bumps. Further, it is seen that the 
DAFs are unchanged when the truck does not move in 
a straight path over bridge (scenario 4). 

5 CONCLUSION 

The present paper establishes a two-dimensional 
spectral description of the road roughness surface 
based on measurements from a Danish road where the 
deterministic trends in transversal (wheel tracking) as 
well as longitudinal direction (some long-waved 
tendency) is modeled. Further, the bumps/expansion 
JOmts at the approaches to the bridge and the 
stochastic nature of the surface roughness are 
included into the model. Based on a Monte Carlo 
simulation study the mean value and the variational 
coefficient of several dynamic amplification factors 

Table 4 Mean and COY results for simulation scenario 3. 

Speed DAFof DAF of moment DAF of shear 
(km/h) moment at at intermediate force at end 

mid-span support support 

50 1.015 (1.03 %) 1.01 J (0.45 %) 1.021 (0.56 %) 

90 1.099 (2.42 %) 1.077 (2.34 %) 1.063 (2.53 %) 

Table 5 Mean and COY results for simulation scenario 4. 

Speed DAFof DAF of moment DAF of shear 
(km/h) moment at mid- at intermediate force at end 

span support Sll£jl_Oft 

50 1.021 (1.43 %) 1.019 (1.1 7 %) 1.022 (1 .38 %) 

90 1.086 (2.06 %) 1.078 (2.07 %) 1.064 (1.95 %) 



I 

have been calculated assuming the parameters 
describing the vehicle 'and the bridge deterministic at 
characteristic values. The overall conclusion from the 
study is that the most important impact on the 
magnitude of the dynamic amplification factor stems 
from short waved bumps. 
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