3,218 research outputs found

    A reduced basis localized orthogonal decomposition

    Get PDF
    In this work we combine the framework of the Reduced Basis method (RB) with the framework of the Localized Orthogonal Decomposition (LOD) in order to solve parametrized elliptic multiscale problems. The idea of the LOD is to split a high dimensional Finite Element space into a low dimensional space with comparably good approximation properties and a remainder space with negligible information. The low dimensional space is spanned by locally supported basis functions associated with the node of a coarse mesh obtained by solving decoupled local problems. However, for parameter dependent multiscale problems, the local basis has to be computed repeatedly for each choice of the parameter. To overcome this issue, we propose an RB approach to compute in an "offline" stage LOD for suitable representative parameters. The online solution of the multiscale problems can then be obtained in a coarse space (thanks to the LOD decomposition) and for an arbitrary value of the parameters (thanks to a suitable "interpolation" of the selected RB). The online RB-LOD has a basis with local support and leads to sparse systems. Applications of the strategy to both linear and nonlinear problems are given

    Localized orthogonal decomposition method for the wave equation with a continuum of scales

    Get PDF
    This paper is devoted to numerical approximations for the wave equation with a multiscale character. Our approach is formulated in the framework of the Localized Orthogonal Decomposition (LOD) interpreted as a numerical homogenization with an L2L^2-projection. We derive explicit convergence rates of the method in the L∞(L2)L^{\infty}(L^2)-, W1,∞(L2)W^{1,\infty}(L^2)- and L∞(H1)L^{\infty}(H^1)-norms without any assumptions on higher order space regularity or scale-separation. The order of the convergence rates depends on further graded assumptions on the initial data. We also prove the convergence of the method in the framework of G-convergence without any structural assumptions on the initial data, i.e. without assuming that it is well-prepared. This rigorously justifies the method. Finally, the performance of the method is demonstrated in numerical experiments

    The Finite Element Method for the time-dependent Gross-Pitaevskii equation with angular momentum rotation

    Get PDF
    We consider the time-dependent Gross-Pitaevskii equation describing the dynamics of rotating Bose-Einstein condensates and its discretization with the finite element method. We analyze a mass conserving Crank-Nicolson-type discretization and prove corresponding a priori error estimates with respect to the maximum norm in time and the L2L^2- and energy-norm in space. The estimates show that we obtain optimal convergence rates under the assumption of additional regularity for the solution to the Gross-Pitaevskii equation. We demonstrate the performance of the method in numerical experiments

    Quantitative Anderson localization of Schr\"odinger eigenstates under disorder potentials

    Full text link
    This paper concerns spectral properties of linear Schr\"odinger operators under oscillatory high-amplitude potentials on bounded domains. Depending on the degree of disorder, we prove the existence of spectral gaps amongst the lowermost eigenvalues and the emergence of exponentially localized states. We quantify the rate of decay in terms of geometric parameters that characterize the potential. The proofs are based on the convergence theory of iterative solvers for eigenvalue problems and their optimal local preconditioning by domain decomposition.Comment: accepted for publication in M3A

    A localized orthogonal decomposition method for semi-linear elliptic problems

    Get PDF
    In this paper we propose and analyze a new Multiscale Method for solving semi-linear elliptic problems with heterogeneous and highly variable coefficient functions. For this purpose we construct a generalized finite element basis that spans a low dimensional multiscale space. The basis is assembled by performing localized linear fine-scale computations in small patches that have a diameter of order H |log H| where H is the coarse mesh size. Without any assumptions on the type of the oscillations in the coefficients, we give a rigorous proof for a linear convergence of the H1-error with respect to the coarse mesh size. To solve the arising equations, we propose an algorithm that is based on a damped Newton scheme in the multiscale space

    Two-Level discretization techniques for ground state computations of Bose-Einstein condensates

    Get PDF
    This work presents a new methodology for computing ground states of Bose-Einstein condensates based on finite element discretizations on two different scales of numerical resolution. In a pre-processing step, a low-dimensional (coarse) generalized finite element space is constructed. It is based on a local orthogonal decomposition and exhibits high approximation properties. The non-linear eigenvalue problem that characterizes the ground state is solved by some suitable iterative solver exclusively in this low-dimensional space, without loss of accuracy when compared with the solution of the full fine scale problem. The pre-processing step is independent of the types and numbers of bosons. A post-processing step further improves the accuracy of the method. We present rigorous a priori error estimates that predict convergence rates H^3 for the ground state eigenfunction and H^4 for the corresponding eigenvalue without pre-asymptotic effects; H being the coarse scale discretization parameter. Numerical experiments indicate that these high rates may still be pessimistic.Comment: Accepted for publication in SIAM J. Numer. Anal., 201

    Collapse of massive magnetized dense cores using radiation-magneto-hydrodynamics: early fragmentation inhibition

    Full text link
    We report the results of radiation-magneto-hydrodynamics calculations in the context of high mass star formation, using for the first time a self-consistent model for photon emission (i.e. via thermal emission and in radiative shocks) and with the high resolution necessary to resolve properly magnetic braking effects and radiative shocks on scales <100 AU. We investigate the combined effects of magnetic field, turbulence, and radiative transfer on the early phases of the collapse and the fragmentation of massive dense cores. We identify a new mechanism that inhibits initial fragmentation of massive dense cores, where magnetic field and radiative transfer interplay. We show that this interplay becomes stronger as the magnetic field strength increases. Magnetic braking is transporting angular momentum outwards and is lowering the rotational support and is thus increasing the infall velocity. This enhances the radiative feedback owing to the accretion shock on the first core. We speculate that highly magnetized massive dense cores are good candidates for isolated massive star formation, while moderately magnetized massive dense cores are more appropriate to form OB associations or small star clusters.Comment: Accepted for publication in ApJL, 19 pages, 4 figure
    • …
    corecore