4,203 research outputs found

    From collective periodic running states to completely chaotic synchronised states in coupled particle dynamics

    Get PDF
    We consider the damped and driven dynamics of two interacting particles evolving in a symmetric and spatially periodic potential. The latter is exerted to a time-periodic modulation of its inclination. Our interest is twofold: Firstly we deal with the issue of chaotic motion in the higher-dimensional phase space. To this end a homoclinic Melnikov analysis is utilised assuring the presence of transverse homoclinic orbits and homoclinic bifurcations for weak coupling allowing also for the emergence of hyperchaos. In contrast, we also prove that the time evolution of the two coupled particles attains a completely synchronised (chaotic) state for strong enough coupling between them. The resulting `freezing of dimensionality' rules out the occurrence of hyperchaos. Secondly we address coherent collective particle transport provided by regular periodic motion. A subharmonic Melnikov analysis is utilised to investigate persistence of periodic orbits. For directed particle transport mediated by rotating periodic motion we present exact results regarding the collective character of the running solutions entailing the emergence of a current. We show that coordinated energy exchange between the particles takes place in such a manner that they are enabled to overcome - one particle followed by the other - consecutive barriers of the periodic potential resulting in collective directed motion

    Clock and Trigger Synchronization between Several Chassis of Digital Data Acquisition Modules

    Full text link
    In applications with segmented high purity Ge detectors or other detector arrays with tens or hundreds of channels, where the high development cost and limited flexibility of application specific integrated circuits outweigh their benefits of low power and small size, the readout electronics typically consist of multi-channel data acquisition modules in a common chassis for power, clock and trigger distribution, and data readout. As arrays become larger and reach several hundred channels, the readout electronics have to be divided over several chassis, but still must maintain precise synchronization of clocks and trigger signals across all channels. This division becomes necessary not only because of limits given by the instrumentation standards on module size and chassis slot numbers, but also because data readout times increase when more modules share the same data bus and because power requirements approach the limits of readily available power supplies. In this paper, we present a method for distributing clocks and triggers between 4 PXI chassis containing DGF Pixie-16 modules with up to 226 acquisition channels per chassis in a data acquisition system intended to instrument the over 600 channels of the SeGA detector array at the National Superconducting Cyclotron Laboratory. Our solution is designed to achieve synchronous acquisition of detector waveforms from all channels with a jitter of less then 1 ns, and can be extended to a larger number of chassis if desired.Comment: CAARI 200

    Non-existence of stationary two-black-hole configurations

    Get PDF
    We resume former discussions of the question, whether the spin-spin repulsion and the gravitational attraction of two aligned black holes can balance each other. To answer the question we formulate a boundary value problem for two separate (Killing-) horizons and apply the inverse (scattering) method to solve it. Making use of results of Manko, Ruiz and Sanabria-G\'omez and a novel black hole criterion, we prove the non-existence of the equilibrium situation in question.Comment: 15 pages, 3 figures; Contribution to Juergen Ehlers Memorial Issue (GeRG journal

    Multi-site H-bridge breathers in a DNA--shaped double strand

    Get PDF
    We investigate the formation process of nonlinear vibrational modes representing broad H-bridge multi--site breathers in a DNA--shaped double strand. Within a network model of the double helix we take individual motions of the bases within the base pair plane into account. The resulting H-bridge deformations may be asymmetric with respect to the helix axis. Furthermore the covalent bonds may be deformed distinctly in the two backbone strands. Unlike other authors that add different extra terms we limit the interaction to the hydrogen bonds within each base pair and the covalent bonds along each strand. In this way we intend to make apparent the effect of the characteristic helicoidal structure of DNA. We study the energy exchange processes related with the relaxation dynamics from a non-equilibrium conformation. It is demonstrated that the twist-opening relaxation dynamics of a radially distorted double helix attains an equilibrium regime characterized by a multi-site H-bridge breather.Comment: 27 pages and 10 figure

    Import of cytochrome c into mitochondria

    Get PDF
    The import of cytochrome c into mitochondria can be resolved into a number of discrete steps. Here we report on the covalent attachment of heme to apocytochrome c by the enzyme cytochrome c heme lyase in mitochondria from Neurospora crassa. A new method was developed to measure directly the linkage of heme to apocytochrome c. This method is independent of conformational changes in the protein accompanying heme attachment. Tryptic peptides of [35S]cysteine-labelled apocytochrome c, and of enzymatically formed holocytochrome c, were resolved by reverse-phase HPLC. The cysteine-containing peptide to which heme was attached eluted later than the corresponding peptide from apocytochrome c and could be quantified by counting 35S radioactivity as a measure of holocytochrome c formation. Using this procedure, the covalent attachment of heme to apocytochrome c, which is dependent on the enzyme cytochrome c heme lyase, could be measured. Activity required heme (as hemin) and could be reversibly inhibited by the analogue deuterohemin. Holocytochrome c formation was stimulated 5–10-fold by NADH > NADPH > glutathione and was independent of a potential across the inner mitochondrial membrane. NADH was not required for the binding of apocytochrome c to mitochondria and was not involved in the reduction of the cysteine thiols prior to heme attachment. Holocytochrome c formation was also dependent on a cytosolic factor that was necessary for the heme attaching step of cytochrome c import. The factor was a heat-stable, protease-insensitive, low-molecular-mass component of unknown function. Cytochrome c heme lyase appeared to be a soluble protein located in the mitochondrial intermembrane space and was distinct from the previously identified apocytochrome c binding protein having a similar location. A model is presented in which the covalent attachment of heme by cytochrome c heme lyase also plays an essential role in the import pathway of cytochrome c

    Cognitive Organization, Perceptions of Parenting and Depression Symptoms in Early Adolescence

    Get PDF
    Despite its strong relation to depression and theorized development across childhood and adolescence, cognitive schema organization has not been explored in early adolescence, a sensitive developmental period for first depression onset. Schema organization is theorized to derive from childhood cognitive internalizations of caregiving relationships, such as critical parenting experiences (e.g., Young et al. in Schema therapy: a practitioner’s guide. Guilford Press, New York, 2003). Thus, the current investigation considers the organization of positive and negative schemas with youth’s perceptions of parental warmth and psychological control and self-reported emotional functioning. Participants were 198 boys and girls aged 9–14 years who completed the Psychological Distance Scaling Task, measures of perceptions of parenting behaviors, anxiety symptoms and depression symptoms. Consistent with hypotheses, higher depression, but not anxiety symptoms were associated with a loosely-interconnected positive schema organization and a tightly-interconnected negative schema organization. Parental responsiveness emerged as the strongest predictor of negative schema structure. Implications for cognitive-developmental theories of depression and early identification of depression risk are discussed

    The decay of quadrupole-octupole 1−1^- states in 40^{40}Ca and 140^{140}Ce

    Full text link
    Background: Two-phonon excitations originating from the coupling of two collective one-phonon states are of great interest in nuclear structure physics. One possibility to generate low-lying E1E1 excitations is the coupling of quadrupole and octupole phonons. Purpose: In this work, the γ\gamma-decay behavior of candidates for the (21+⊗31−)1−(2_1^+\otimes 3_1^-)_{1^-} state in the doubly-magic nucleus 40^{40}Ca and in the heavier and semi-magic nucleus 140^{140}Ce is investigated. Methods: (γ⃗,γ′)(\vec{\gamma},\gamma') experiments have been carried out at the High Intensity γ\gamma-ray Source (HIγ{\gamma}S) facility in combination with the high-efficiency γ\gamma-ray spectroscopy setup γ3\gamma^3 consisting of HPGe and LaBr3_3 detectors. The setup enables the acquisition of γ\gamma-γ\gamma coincidence data and, hence, the detection of direct decay paths. Results: In addition to the known ground-state decays, for 40^{40}Ca the decay into the 31−3^-_1 state was observed, while for 140^{140}Ce the direct decays into the 21+2^+_1 and the 02+0^+_2 state were detected. The experimentally deduced transition strengths and excitation energies are compared to theoretical calculations in the framework of EDF theory plus QPM approach and systematically analyzed for N=82N=82 isotones. In addition, negative parities for two J=1J=1 states in 44^{44}Ca were deduced simultaneously. Conclusions: The experimental findings together with the theoretical calculations support the two-phonon character of the 11−1^-_1 excitation in the light-to-medium-mass nucleus 40^{40}Ca as well as in the stable even-even N=82N=82 nuclei.Comment: 11 pages, 6 figures, as accepted in Phys. Rev.

    Bosonic Reduction of Susy Generalized Harry Dym Equation

    Full text link
    In this paper we construct the two component supersymmetric generalized Harry Dym equation which is integrable and study various properties of this model in the bosonic limit. In particular, in the bosonic limit we obtain a new integrable system which, under a hodograph transformation, reduces to a coupled three component system. We show how the Hamiltonian structure transforms under a hodograph transformation and study the properties of the model under a further reduction to a two component system. We find a third Hamiltonian structure for this system (which has been shown earlier to be a bi-Hamiltonian system) making this a genuinely tri-Hamiltonian system. The connection of this system to the modified dispersive water wave equation is clarified. We also study various properties in the dispersionless limit of our model.Comment: 21 page
    • …
    corecore