14 research outputs found

    Clinical relevance of rapid FOXF1-targeted sequencing in patients suspected of alveolar capillary dysplasia with misalignment of pulmonary veins

    Get PDF
    Alveolar capillary dysplasia with misalignment of pulmonary Veins (ACDMPV) is a lethal congenital lung disorder that presents shortly after birth with respiratory failure and therapy-resistant pulmonary hypertension. It is associated with heterozygous point mutations and genomic deletions that involve the FOXF1 gene or its upstream regulatory region. Patients are unresponsive to the intensive treatment regiments and suffer unnecessarily, because ACDMPV is not always timely recognized and histological diagnosis is invasive and time-consuming. Here, we demonstrate the usefulness of a non-invasive, fast genetic test for FOXF1 variants that we previously developed to rapidly diagnose ACDMPV and reduce the time of hospitalization.</p

    Application of the New Classification on Patients with a Disorder of Sex Development in Indonesia

    Get PDF
    Disorder of sex development (DSD) patients in Indonesia most often do not receive a proper diagnostic evaluation and treatment. This study intended to categorize 88 Indonesian patients in accordance with the new consensus DSD algorithm. Diagnostic evaluation including clinical, hormonal, genetic, imaging, surgical, and histological parameters was performed. Fifty-three patients were raised as males, and 34 as females. Of 22 patients with 46, XX DSD, 15 had congenital adrenal hyperplasia, while in one patient, an ovarian Leydig cell tumor was found. In all 58 46, XY DSD patients, 29 were suspected of a disorder of androgen action (12 with an androgen receptor mutation), and in 9, gonadal dysgenesis was found and, in 20, severe hypospadias e.c.i. Implementation of the current consensus statement in a resource-poor environment is very difficult. The aim of the diagnostic workup in developing countries should be to end up with an evidence-based diagnosis. This is essential to improve treatment and thereby to improve the patients' quality of life

    The genetic diagnosis of rare endocrine disorders of sex development and maturation : a survey among Endo-ERN centres

    Get PDF
    Differences of sex development and maturation (SDM) represent a heterogeneous puzzle of rare conditions with a large genetic component whose management and treatment could be improved by an accurate classification of underlying molecular conditions, and next-generation sequencing (NGS) should represent the most appropriate approach. Therefore, we conducted a survey dedicated to the use and potential outcomes of NGS for SDM disorders diagnosis among the 53 health care providers (HCP) of the European Reference Network for rare endocrine conditions. The response rate was 49% with a total of 26 HCPs from 13 countries. All HCPs, except 1, performed NGS investigations for SDM disorders on 6720 patients, 3764 (56%) with differences of sex development (DSD), including 811 unexplained primary ovarian insufficiency, and 2956 (44%) with congenital hypogonadotropic hypogonadism (CHH). The approaches varied from targeted analysis of custom gene panels (range: 11-490 genes) in 81.5% of cases or whole exome sequencing with the extraction of a virtual panel in the remaining cases. These analyses were performed for diagnostic purposes in 21 HCPs, supported by the National Health Systems in 16 cases. The likelihood of finding a variant ranged between 7 and 60%, mainly depending upon the number of analysed genes or criteria used for reporting, most HCPs also reporting variants of uncertain significance. These data illustrate the status of genetic diagnosis of DSD and CHH across Europe. In most countries, these analyses are performed for diagnostic purposes, yielding highly variable results, thus suggesting the need for harmonization and general improvements of NGS approaches.publishersversionPeer reviewe

    Mucopolysaccharidosis type IIIB may predominantly present with an attenuated clinical phenotype

    Get PDF
    Mucopolysaccharidosis type IIIB (MPS IIIB, Sanfilippo syndrome type B) is a lysosomal storage disorder caused by deficiency of the enzyme N-acetyl-α-D-glucosaminidase (NAGLU). Information on the natural course of MPS IIIB is scarce but much needed in view of emerging therapies. To improve knowledge on the natural course, data on all 52 MPS IIIB patients ever identified by enzymatic studies in the Netherlands were gathered. Clinical data on 44 patients could be retrieved. Only a small number (n = 9; 21%) presented with a classical MPS III phenotype; all other patients showed a much more attenuated course of the disease characterized by a significantly slower regression of intellectual and motor abilities. The majority of patients lived well into adulthood. First signs of the disease, usually mild developmental delay, were observed at a median age of 4 years. Subsequently, patients showed a slowing and eventually a stagnation of development. Patients with the attenuated phenotype had a stable intellectual disability for many years. Molecular analysis was performed in 24 index patients. The missense changes p.R643C, p.S612G, p.E634K, and p.L497V were exclusively found in patients with the attenuated phenotype. MPS IIIB comprises a remarkably wide spectrum of disease severity, and an unselected cohort including all Dutch patients showed a large proportion (79%) with an attenuated phenotype. MPS IIIB must be considered in patients with a developmental delay, even in the absence of a progressive decline in intellectual abilities. A key feature, necessitating metabolic studies, is the coexistence of behavioral problems

    Prenatal ultrasound finding of atypical genitalia: Counseling, genetic testing and outcomes

    Get PDF
    Objective: To report uptake of genetic counseling (GC) and prenatal genetic testing after the finding of atypical genitalia on prenatal ultrasound (US) and the clinical and genetic findings of these pregnancies. Methods: A retrospective cohort study (2017–2019) of atypical fetal genitalia in a large expert center for disorders/differences of sex development. We describe counseling aspects, invasive prenatal testing, genetic and clinical outcome of fetuses apparently without [group 1, n = 22 (38%)] or with [group 2, n = 36 (62%)] additional anomalies on US. Results: In group 1, 86% of parents opted for GC versus 72% in group 2, and respectively 58% and 15% of these parents refrained from invasive testing. Atypical genitalia were postnatally confirmed in 91% (group 1) and 64% (group 2), indicating a high rate of false positive US diagnosis of ambiguous genitalia. Four genetic diagnoses were established in group 1 (18%) and 10 in group 2 (28%). The total genetic diagnostic yield was 24%. No terminations of pregnancy occurred in group 1. Conclusions: For optimal care, referral for an expert fetal US scan, GC and invasive diagnostics including broad testing should be offered after prenatal detection of isolated atypical genitalia

    Clinical Study Application of the New Classification on Patients with a Disorder of Sex Development in Indonesia

    No full text
    Disorder of sex development (DSD) patients in Indonesia most often do not receive a proper diagnostic evaluation and treatment. This study intended to categorize 88 Indonesian patients in accordance with the new consensus DSD algorithm. Diagnostic evaluation including clinical, hormonal, genetic, imaging, surgical, and histological parameters was performed. Fifty-three patients were raised as males, and 34 as females. Of 22 patients with 46, XX DSD, 15 had congenital adrenal hyperplasia, while in one patient, an ovarian Leydig cell tumor was found. In all 58 46, XY DSD patients, 29 were suspected of a disorder of androgen action (12 with an androgen receptor mutation), and in 9, gonadal dysgenesis was found and, in 20, severe hypospadias e.c.i. Implementation of the current consensus statement in a resource-poor environment is very difficult. The aim of the diagnostic workup in developing countries should be to end up with an evidence-based diagnosis. This is essential to improve treatment and thereby to improve the patients&apos; quality of life

    De novo missense variants in ZBTB47 are associated with developmental delays, hypotonia, seizures, gait abnormalities, and variable movement abnormalities

    No full text
    The collection of known genetic etiologies of neurodevelopmental disorders continues to increase, including several syndromes associated with defects in zinc finger protein transcription factors (ZNFs) that vary in clinical severity from mild learning disabilities and developmental delay to refractory seizures and severe autism spectrum disorder. Here we describe a new neurodevelopmental disorder associated with variants in ZBTB47 (also known as ZNF651), which encodes zinc finger and BTB domain-containing protein 47. Exome sequencing (ES) was performed for five unrelated patients with neurodevelopmental disorders. All five patients are heterozygous for a de novo missense variant in ZBTB47, with p.(Glu680Gly) (c.2039A&gt;G) detected in one patient and p.(Glu477Lys) (c.1429G&gt;A) identified in the other four patients. Both variants impact conserved amino acid residues. Bioinformatic analysis of each variant is consistent with pathogenicity. We present five unrelated patients with de novo missense variants in ZBTB47 and a phenotype characterized by developmental delay with intellectual disability, seizures, hypotonia, gait abnormalities, and variable movement abnormalities. We propose that these variants in ZBTB47 are the basis of a new neurodevelopmental disorder.</p

    Unraveling the Genetics of Congenital Diaphragmatic Hernia: An Ongoing Challenge

    Get PDF
    Congenital diaphragmatic hernia (CDH) is a congenital structural anomaly in which the diaphragm has not developed properly. It may occur either as an isolated anomaly or with additional anomalies. It is thought to be a multifactorial disease in which genetic factors could either substantially contribute to or directly result in the developmental defect. Patients with aneuploidies, pathogenic variants or de novo Copy Number Variations (CNVs) impacting specific genes and loci develop CDH typically in the form of a monogenetic syndrome. These patients often have other associated anatomical malformations. In patients without a known monogenetic syndrome, an increased genetic burden of de novo coding variants contributes to disease development. In early years, genetic evaluation was based on karyotyping and SNP-array. Today, genomes are commonly analyzed with next generation sequencing (NGS) based approaches. While more potential pathogenic variants are being detected, analysis of the data presents a bottleneck—largely due to the lack of full appreciation of the functional consequence and/or relevance of the detected variant. The exact heritability of CDH is still unknown. Damaging de novo alterations are associated with the more severe and complex phenotypes and worse clinical outcome. Phenotypic, genetic—and likely mechanistic—variability hampers individual patient diagnosis, short and long-term morbidity prediction and subsequent care strategies. Detailed phenotyping, clinical follow-up at regular intervals and detailed registries are needed to find associations between long-term morbidity, genetic alterations, and clinical parameters. Since CDH is a relatively rare disorder with only a few recurrent changes large cohorts of patients are needed to identify genetic associations. Retrospective whole genome sequencing of historical patient cohorts using will yield valuable data from which today's patients and parents will profit Trio whole genome sequencing has an excellent potential for future re-analysis and data-sharing increasing the chance to provide a genetic diagnosis and predict clinical prognosis. In this review, we explore the pitfalls and challenges in the analysis and interpretation of genetic information, present what is currently known and what still needs further study, and propose strategies to reap the benefits of genetic screening
    corecore