ORIGINAL ARTICLE

Prenatal ultrasound finding of atypical genitalia: Counseling, genetic testing and outcomes

Yolande van Bever^{1,2} | Irene A. L. Groenenberg^{1,3} | Maarten F. C. M. Knapen^{1,3} | Arianne B. Dessens^{1,4} | Sabine E. Hannema^{1,5,6,7} | Katja P. Wolffenbuttel^{1,8} | Karin E. M. Diderich² | Lies H. Hoefsloot² | Malgorzata I. Srebniak² | Hennie T. Bruggenwirth^{1,2}

¹DSD-Expert Center, Erasmus MC, Sophia Children's Hospital, University Medical Center, Rotterdam, The Netherlands

²Department of Clinical Genetics, Erasmus MC, University Medical Center, Rotterdam, The Netherlands

³Department of Obstetrics and Prenatal Medicine, Erasmus MC, University Medical Center, Rotterdam, The Netherlands

⁴Department of Child and Adolescent Psychiatry, Erasmus MC, University Medical Center Rotterdam, The Netherlands

⁵Department of Pediatric Endocrinology, Erasmus MC, University Medical Center Rotterdam, The Netherlands

⁶Department of Pediatrics, Leiden University Medical Center, Leiden, The Netherlands

⁷Department of Paediatric Endocrinology, Amsterdam University Medical Center, Amsterdam, The Netherlands

⁸Department of Urology and Pediatric Urology, Erasmus MC, University Medical Center Rotterdam, The Netherlands

Correspondence

Yolande van Bever, Department of Clinical Genetics, Erasmus MC, Sophia Children's Hospital, University Medical Center Rotterdam, Ee 2018, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands. Email: y.vanbever@erasmusmc.nl

Abstract

Objective: To report uptake of genetic counseling (GC) and prenatal genetic testing after the finding of atypical genitalia on prenatal ultrasound (US) and the clinical and genetic findings of these pregnancies.

Methods: A retrospective cohort study (2017–2019) of atypical fetal genitalia in a large expert center for disorders/differences of sex development. We describe counseling aspects, invasive prenatal testing, genetic and clinical outcome of fetuses apparently without [group 1, n = 22 (38%)] or with [group 2, n = 36 (62%)] additional anomalies on US.

Results: In group 1, 86% of parents opted for GC versus 72% in group 2, and respectively 58% and 15% of these parents refrained from invasive testing. Atypical genitalia were postnatally confirmed in 91% (group 1) and 64% (group 2), indicating a high rate of false positive US diagnosis of ambiguous genitalia. Four genetic diagnoses were established in group 1 (18%) and 10 in group 2 (28%). The total genetic diagnostic yield was 24%. No terminations of pregnancy occurred in group 1.

Conclusions: For optimal care, referral for an expert fetal US scan, GC and invasive diagnostics including broad testing should be offered after prenatal detection of isolated atypical genitalia.

Key points

What's already known about this topic?

• Prenatal genetic counseling (GC) and testing has a high diagnostic yield in multiple congenital anomalies and enables expecting parents to make well-informed choices about their pregnancy.

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made. © 2022 The Authors. Prenatal Diagnosis published by John Wiley & Sons Ltd.

2 WILEY-DIAGNOSIS

What does this study add?

• We present pre- and postnatal data on fetuses with atypical genitalia with and without concurrent anomalies on ultrasound (US). Our study emphasizes why isolated atypical genitalia on US should prompt referral to an expert prenatal (disorders or differences of sex development) center for offering extensive prenatal GC and invasive prenatal testing.

1 | INTRODUCTION

Guidelines for disorders or differences of sex development (DSD), defined as congenital conditions with atypical chromosomal, gonadal, and/or anatomical sex development,¹ do not include information on prenatal detection of atypical genitalia, although atypical genitalia are frequently detected or suspected in prenatal ultrasound (US) screening.^{2–5} For genital anomalies, the frequency of additional anomalies is largely unknown. It was estimated to be 30% for males with hypospadias in a study that included fetal growth restriction (FGR) as an additional anomaly⁶ and 41% overall in retrospective cohorts of neonatal ambiguous genitalia.⁷ These were retrospective cohort studies in DSD-centers; the frequency of additional anomalies in the prenatal setting remains unknown.

The expanding options for prenatal genetic testing for congenital anomalies, including Whole Exome Sequencing (WES) followed by targeted analysis of gene panels, have led to an increase in prenatal genetic diagnoses.⁸⁻¹⁷ Offering pretest GC with the option of invasive prenatal testing in case of fetal US anomalies has therefore become even more important. However, offering invasive prenatal testing in pregnancies once isolated atypical genitalia are observed is not common practice in every prenatal center.^{3,5} Prenatal specialists, genetic counselors and the laboratory need to be aware of each other's workflow, policies and limitations such as turn-around-time, whether or not variants of unknown clinical significance (VUS) are reported in the prenatal setting, possibilities and limitations of both the US examination and the genetic tests. Then parents can be accurately informed about both the options of genetic testing and their pros, cons and limitations^{18,19} while aware of the fact that prenatal US cannot detect all facets of the genital phenotype as is possible in the postnatal situation. A well-documented informed consent is necessary. The variable severity of genetic conditions adds to the complexity for parents to make a well-informed choice about invasive testing in the absence of other congenital anomalies on an expert US exam indicating a possible serious condition.^{20,21} However, a genetic diagnosis may help parents in the decision whether or not to opt for a termination of pregnancy (TOP). Moreover, the possibly incomplete prenatal phenotype necessitates a thorough postnatal follow up. This study aims to evaluate the implementation of pretest GC and invasive testing, the frequency and accuracy of detection of additional anomalies at prenatal US and the yield of genetic testing.

2 | MATERIALS AND METHODS

2.1 | Patient identification and selection

We retrospectively included pregnant women with atypical genitalia seen in the fetus on at least one expert US exam referred to our expert center in our university hospital between January 2017 and December 2019. Atypical fetal genitalia were not always the reason for referral. The search terms used were: atypical genitalia; ambiguous genitalia; abnormal genitalia; hypospadias. Group 1 consisted of fetuses with apparently isolated atypical genitalia with or without a soft marker or FGR (defined as fetal growth <10th centile).²² Group 2 consisted of fetuses with at least one other structural anomaly, with or without FGR. Assignment in group 1 or 2 was based on information at the time of atypical genitalia detection. Gestational age at inclusion varied as this depended on the moment of referral; mostly after routine mid-trimester screening around 20 weeks or after a third trimester US exam for growth assessment.

2.2 | Ultrasound examination

In addition to a complete expert US scan, group 1 fetuses received a dedicated 2D-US and 3D-US for detailed and systematic evaluation of the urogenital tract performed by one of three experienced sonographers. Targeted imaging of the urogenital tract assessed the following structures: phallus (i.e., dimensions, presence of blunted tip of the phallus, curvature, visualization of the corpora and their curvature, if possible the meatus, presence of extra tissue around the phallus); labio-scrotal folds (i.e., fusion and the presence or absence of a raphe) and, if the examination was performed after 28 weeks, the presence and location of the testes. Also the presence or absence of a uterus by measurement of the bladder-rectum distance and by visualization of a mass bulging into the bladder, the anal rectal sphincter complex, bladder, kidneys and the insertion of the umbilical cord were examined. 3D-US was used as a complementary tool to 2D-US when fetal position was favorable and good quality images could be obtained. The three-orthogonal-plane display was used for anatomic structural relations. The genitalia were also visualized in surface rendering display.

The medical records were retrospectively reviewed to assess the presence of other anomalies, whether or not GC had been performed and, if parents had opted for invasive prenatal testing, which genetic tests had been performed and finally, the postnatal clinical and genetic findings.

2.3 | Counseling process

Routine pre-test counseling for invasive testing and chromosomal microarray analysis (CMA) and the possibility to be referred to a clinical geneticist was provided by the expert sonographer or consultant obstetrician. A clinical geneticist provided more extensive pre-test counseling including possible diagnosis, information on the option of WES-based targeted gene panel analysis and informed consent on types of pathogenic variants that are to be reported, from the moment this test became an option in the course of 2018. This counseling is referred to as genetic counseling (GC).

Parents with fetuses likely to survive without major structural anomalies, necessitating extensive care, were expected to be followed-up principally by the DSD team. They received global information on sexual determination and differentiation to help them understand the fetal US findings regarding the atypical genitalia. Furthermore, information was provided on pre- and postnatal clinical management including the possibility that sex assignment after birth will sometimes be delayed until results of diagnostic evaluations are available. Information was also provided on the possibility that the genitalia might appear normal and no further investigation would be necessary.

Psychological counseling was offered to answer any questions parents might have, to help them cope with the uncertainties they faced, and discuss with them if and how they would like to disclose the child's condition to family and friends.

After pre-test counseling performed by an expert sonographer or consultant obstetrician parents could opt for amniocentesis followed by CMA with or without proceeding to GC. All parents were informed about the option of further genetic testing and if parents were interested in this they were referred to a clinical geneticist. WES-based targeted gene panel analysis was offered only after extensive GC, including discussing incidental findings (IF) and written consent from 2018 onwards. Parents expecting a child in group 1 had the option for analysis of a smaller DSD panel, containing genes known to be involved in isolated and syndromic forms of DSD,²³ thus reducing the chance of IF. In pregnancies with multiple congenital anomalies (MCA), a broader multiple congenital anomalies/intellectual disability (MCA/ID) panel was generally offered (see supplemental data S4, S5 and S6 for details).

2.4 | Prenatal genetic testing

In the Netherlands, all pregnant women are offered non-invasive prenatal testing, but the X and Y- chromosomes are not included in this analysis. If parents of our cohorts wished prenatal genetic testing, amniocentesis was performed either at 20–22 weeks, after the mid trimester expert US scan, or occasionally at 32 weeks, when risk of fetal loss is lower if the couple did not have the intention to terminate pregnancy in case of an adverse result but wanted to have

genetic testing/results nonetheless. Blood from both parents was obtained. Which prenatal genetic tests were performed depended on the choices of the parents and on the anomalies found. Most frequently CMA²⁴ was performed, but when indicated also QF-PCR (Quantitative fluorescence polymerase chain reaction) of chromosomes 13, 18, 21, X and Y and/or karyotyping (see supplemental data S1 for details). In addition, WES was performed on DNA extracted from the amniotic samples and parental blood, followed by a trio analysis (MCA/ID panels) or by singleton analysis (small panel, such as DSD). All panels were WES based. Maternal cell contamination of the fetal DNA was excluded (see supplemental data for details).

2.5 | Disclosure of variants

CNVs (copy number variant) found by CMA were classified according to published recommendations²⁵ and all pathogenic variants were reported. Susceptibility CNVs and likely pathogenic CNV's were first discussed with the multidisciplinary prenatal team and reported when considered relevant.

Classification of the sequence variants found after WES was according to the international standard ACMG - America College of Medical Genetics criteria²⁶ and only likely pathogenic (class 4) and pathogenic variants (class 5) were reported in the prenatal setting. Variants of unknown clinical significance (VUS, class 3) were not reported by the laboratory and are also not reported in this paper. Besides (likely) pathogenic causative variants, (likely) pathogenic, early onset or treatable IF were reported to parents as indicated in the informed consent. In cases of doubt whether or not to report a variant, including IF, this was discussed in a multidisciplinary team and reported if considered relevant.

2.6 | Postnatal genetic testing

Fluorescent in situ hybridization for X-specific (CEPX/DXZ1, Vysis) and Y specific probes (CEPY/DYZ3, Vysis) in blood or buccal smear were performed to determine the chromosomal sex and to look for sex-chromosomal mosaicism. Karyotype and/or SNP-array were performed when indicated and not performed prenatally as described in the prenatal setting.²⁷ Likewise, gene panel analysis was performed or extended to a broader panel or WES analysis when indicated in case of additional anomalies. Re-analysis were performed only after additional GC and after obtaining informed consent. VUS in relevant genes were then reported in the postnatal setting; these variants are also reported in the current study. Chromosomal and molecular VUS were not regarded explanatory for the phenotype (for details see Tables S1 and S2).

Endocrine work-up was performed when indicated as proposed in DSD-guidelines^{27,28} and low birth weight was defined following the fetal growth calculator.²⁹

MILEY-DIAGNOSI

3 | RESULTS

3.1 | Uptake of prenatal genetic counseling and testing

Eighty-two percent (18/22) of group 1 fetuses and 66% (24/36) of group 2 fetuses were referred before the 24th week of gestation. Median gestational age at the first US examination was 21 + 4 weeks for both groups (range 20 + 2 - 33 + 6 weeks, group 1; 10 + 3 - 35 + 5 weeks, group 2). Figures 1 and 2 show examples of second and third trimester US examinations. Table 1 summarizes the uptake of GC and invasive testing for both groups. All fetuses that had gene panel analysis also had CMA.

3.2 | Pre- and postnatal genetic testing

Figure 3, Table 2 and Tables S1–S3 show details on the outcome of prenatal genetic testing. In group 1 there were only postnatal genetic diagnoses made in four (18%) children (Table 2). These were heterozygous (likely) pathogenic variants in *MAP3K1* and *NR5A1*, genes known to be involved in DSD, but also a homozygous *TSEN54*

pathogenic variant unrelated to the atypical genitalia, causing pontocerebellar hypoplasia and a ring chromosome 18. In five (23% of group 1) cases no pre- or postnatal genetic testing was performed because of postnatal normal genitalia (once), buried penis not needing genetic testing (twice) or loss to follow-up in our DSD center (two cases).

In group 2 prenatal either an MCA panel (6), MCA-ID panel (2) or Noonan panel (1) was performed. A prenatal genetic diagnosis, at least partially explaining the fetal phenotype was made in 22% (8/36 fetuses, see for details Figure 1, Table 2, Table S1–S3). Non-CMA diagnoses were Cornelia de Lange syndrome and ARX-related ID/ MCA syndrome. Postnatal genetic testing revealed a trisomy 21 and a second diagnosis of Cornelia de Lange syndrome.

In four (11%) cases no pre- or postnatal genetic testing was performed because of postnatal normal genitalia (once), intrauterine fetal demise (IUFD) (once) or loss to follow-up in our DSD center (twice).

The overall yield of pre- and postnatal genetic tests was 24% (14/58): 18% (4/22) in group 1 versus 28% (10/36), in group 2 (Figure 1), after excluding one IF, a child with an XXY genotype and normal genitalia at birth. Figure 3 shows the yield for the different tests.

FIGURE 1 2D and 3D US of the genitalia in severe hypospadias in the second trimester. (A) 2D US in case 5 at 21 weeks of gestation demonstrating the ventrally curved and shortened phallus and blunt tip of phallus (arrow) in a nearly sagittal plane. (B) 3D US surface rendered view in case 5 of the curvature of the phallus. (C) 2D US in case 8 at 21 weeks of gestation demonstrating the blunt tip and shortened phallus in the axial plane. (D) 2D US in case 8 demonstrating the ventrally curved and shortened phallus and blunt tip of phallus (arrow) in the sagittal plane. US, ultrasound

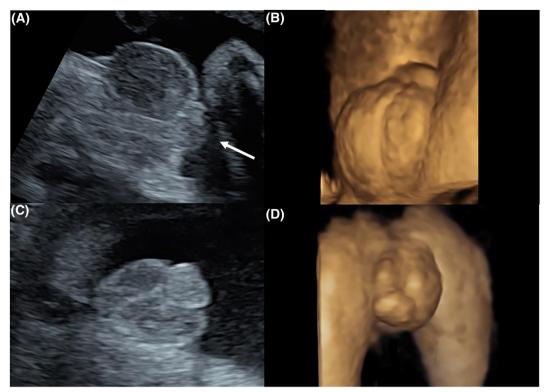


FIGURE 2 2D and 3D US of the genitalia in severe hypospadias in the third trimester. (A) 2D US in case 25 at 31 weeks of gestation demonstrating the ventrally curved and shortened phallus, blunt tip of phallus (arrow) in the sagittal plane. (B) 3D US surface rendered view in case 25 showing the scrotum in distal hypospadias and the ventral curvature of the shortened phallus. (C) 2D US in case 22 at 30 weeks of gestation demonstrating the shortened phallus interposed between the scrotal walls in the axial plane. (D) 3D US surface rendered view in case 22 showing the partial bifid scrotum in penoscrotal hypospadias and the ventral curvature of the shortened phallus. US, ultrasound

TABLE 1 Uptake of prenatal GC and invasive testing in isolated and non-isolated atypical genitalia

Feature	Isolated atypical genitalia (group 1) 22 (38%)	Non-isolated atypical genitalia (group 2) 36 (62%)
Prenatal genetic counseling ^a	19/22 (86%)	26/36 (72%)
Prenatal invasive testing with genetic counseling ^a	8/19 (42%)	22/26 (85%)
Prenatal invasive testing, no genetic counseling ^a	1/22 (5%)	4/36 (11%)
Prenatal genetic counseling ^a , no invasive testing	11/19 (58%)	4/26 (15%)
No prenatal genetic counseling ^a , no testing	2/22 (9%)	6/36 (17%)
Prenatal priority panel analysis offered ^b	4/8 (50%)	8/22 (36%)
Prenatal panel analysis performed	3/4 (75%)	8/8 (100%)

Abbreviations: GC, genetic counseling; WES, whole exome sequencing.

^aGC by a geneticist, not the pretest counseling performed by the expert sonographer or consultant obstetrician.

^bCases after 2017 only, if parents declined prenatal invasive testing or already decided on TOP, panel analysis was not offered as prenatal priority test. All gene panels were WES-based.

3.3 | Postnatal clinical findings in group 1 and 2

Table 3 summarizes and compares the clinical outcome of groups 1 and 2. There was no TOP in group 1, but one extremely premature discordant twin died within 2 weeks after birth.

Atypical genitalia were confirmed postnatally in 91% (20/22, group 1) versus 64% (23/36, group 2). Overall, atypical genitalia were

correctly identified prenatally in 80% (43/54) with known postnatal genital phenotype. Four fetuses (18%) that initially presented with isolated atypical genitalia had additional anomalies, either at a subsequent US (1) or at postnatal examination (3): bladder extrophy (case 2), cleft palate (case 16), proximal implantation of the thumb and heart defect (case 39) and hypoplastic cerebellum (case 51). In group 2 the additional anomalies were not confirmed in four cases

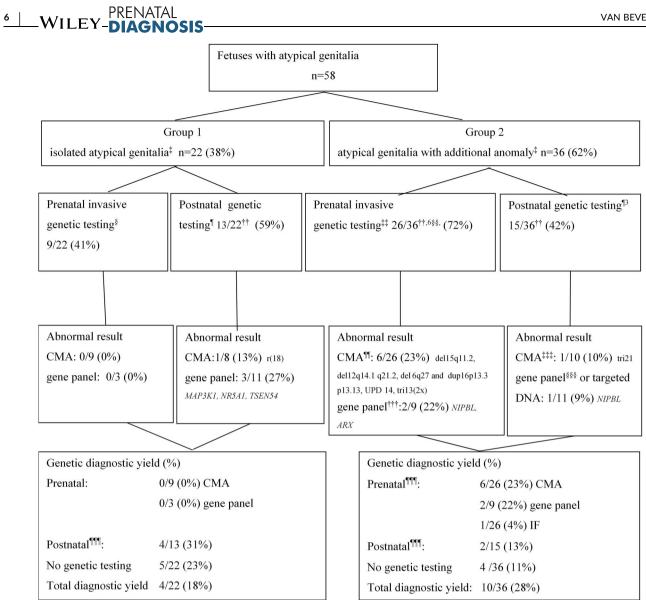


FIGURE 3 Comparison of genetic counseling and results of group 1, isolated atypical genitalia, and group 2, atypical genitalia with additional anomalies[†]. [†] for complete overview of who got which test see Table S3. The same individual could have had analysis of a gene panel prenatally and a broader panel or whole exome sequencing postnatally; [‡] situation at referral; [§] CMA, gene panel optional; [¶] variable: CMA or karyotyping and FISH for identification of the sex chromosomes, gene panel analysis or full exome; ^{††} includes cases with additional genetic testing in probands who also had prenatal genetic testing; ^{‡‡} CMA, gene panel optional, but if high suspicion chromosomal anomaly also QF-PCR and karyotyping; 55 once a Noonan panel was performed for large nuchal translucency, prior to ultrasound detection of atypical genitalia; ୩ in three cases only targeted array or QF-PCR was performed, no CMA (cases 4, 53, 55); ††† in two cases (14, 56) targeted DNA analysis was performed, no gene panel analysis; *** Mostly this was FISH for the sex chromosomes and/or karyotyping; ^{\$\$\$} twice there was targeted DNAanalysis (cases 34, 52); ¹¹¹¹ explaining atypical genitalia and/or additional anomalies. CMA, chromosomal microarray analysis; FISH, fluorescent in situ hybridization; UPD, uniparental disomy

(11%). These were short tubular bones $(2\times)$, pyelectasia, aortic coarctation (cases 13, 15, 30, 46).

FGR or low birthweight (<p10) was not classified as an additional anomaly, but was frequently present in both groups. The percentage of twin pregnancies was high, especially in group 1, 23% (5/22). Endocrine testing was performed in 67% (14/21 surviving cases) and was abnormal in two: case 8 with insufficient androgen production and case 22 with partial gonadal dysgenesis. In group 2 this was performed in 7 of 17 surviving infants (41%) and abnormal in two (case 10 and 44).

An overview of all pregnancies, genetic testing and genetic and clinical outcomes is presented in Tables 4 and 5.

DISCUSSION 4

To our best knowledge this is the largest study of clinical and genetic aspects including broad genetic testing with CMA and gene panel analysis of a prenatal cohort of fetuses with atypical genitalia. It provides the following important findings:

TABLE 2 (Likely) pathogenic cytogenetic and molecular genetic results in isolated atypical genitalia group (group 1)

Nr	Postnatal clinical findings	Pre-and postnatal genetic findings	Class	Interpretation in relation to atypical genital
6	Hypospadias	DSD-panel: Heterozygous	4	Likely pathogenic
		-NM_005921.1(MAP3K1):c.152G>C, p.(Gly51Ala) dn		
		PS2 and PM2		
8	Hypospadias	DSD panel: Heterozygous	5	Pathogenic
		-NM_004959.4(NR5A1):c.938G>A, p.(Arg313His) dn		
		PS1, PS2, PM1, PM2, PP2		
39	Hypospadias in one twin with postnatally	Karyotyping and CMA:	5	Pathogenic, ring chromosome 18 with a
	additional anomalies	46,XY,r(18).arr[hg19]18p11.32 (11358_701192)x1,		deletion at 18p22.1q23
		18p11.32p11.21(705519_15165362)x3,		
		18p22.1q23(65573535_78010620)x1		
51	Hypospadias, later with brain and cardiac	MCA-panel: Homozygous	5	Pathogenic, pontocerebellar hypoplasia
	anomaly	- NM_207346.2 (TSEN54):c.919G>T, p.(Ala307Ser) mat, pat		unrelated to hypospadias
		PS4, PM2, PM3, PP1, PP5		

Abbreviations: CMA, chromosomal micro array analysis; dn, de novo; DSD, disorders/differences of sex development; mat, maternal; MCA, multiple congenital anomalies; Nr, case number; pat, paternal; PS2, PM2 etc., ACMG criteria²⁶ used to decide on pathogenicity of a variant.

- Atypical genitalia are in nearly 2/3 of cases associated with other anomalies (62%).
- When prenatal apparently isolated atypical genitalia were detected, the majority of parents opted for GC (86%), but not all opted for invasive prenatal genetic testing with the aim to find the genetic cause of the atypical genitalia or related syndromes (58%).
- 3. Accuracy concerning additional anomalies was high, but in 18% fetuses with apparently isolated atypical genitalia, additional findings were diagnosed postnatally. On the other hand, in 11% additional anomalies in group 2 were not confirmed at birth.
- 4. There were less false-positive diagnosis of genital anomalies in group 1 (9%) who received targeted US of the urogenital system in addition to an extended US exam than in group 2 (28%) after postnatal follow-up.
- 5. The diagnostic yield of genetic testing was 24%, in both groups combined, 18%, in group 1% and 28%, in group 2, although not in all instances explaining the atypical genital. The genetic findings that were considered diagnostic have previously been reported in the literature in association with a similar phenotype.^{30–39}
- 6. No parents terminated pregnancy for apparently isolated atypical genitalia.

In our DSD-team experience it is not exceptional that parents of children with apparently isolated atypical genitalia report that during the prenatal period there was uncertainty or confusion about the genitalia on prenatal US. Not all of these parents are referred to a specialized center for expert sonography, GC or invasive testing as is common practice if extra-genital anomalies are diagnosed prenatally. Nevertheless, the high acceptance of GC in this group, suggests that most parents wish to receive information on the possible DSD and discuss diagnostic options. This underlines the need to refer all patients with atypical genitalia for GC and to offer further genetic testing. Because our study was retrospective we were not able to investigate the motives to decline or proceed to pre-test GC or testing. In the isolated group the information on postnatal management of atypical genitalia may have been a motive to opt for testing. Alternatively, parents in this group may have found it more difficult to decide for or against genetic testing and this may have been a motive to come for GC.

PRENATAL

SIS-WILEY—[⊥]⁷

On the one hand, the chance that there is an underlying genetic condition even in the absence of signs of a serious condition on expert US exam^{20,21,40} may not outweigh any small risk of fetal loss due to a prenatal invasive procedure. On the other hand, there is a risk of an underlying genetic condition even in the absence of signs of a serious condition on expert US exam.^{20,21,40}

While the risk of a syndromic disorder in isolated structural fetal anomalies is lower, it is well known that fetal phenotype is incomplete and that isolated anomalies can be part of a genetic syndrome as well.

Our data illustrate this by showing postnatal genetic diagnoses in 19% of the fetuses in the isolated atypical genitalia group (cases 6, 8, 39, 51). This considerable diagnostic yield of genetic testing in group 1 after birth illustrates the potential benefit of GC and offering prenatal invasive testing with CMA and broad panel analysis, regardless of the presence of additional anomalies.

⁸⊥_WILEY-DIAGNOSIS

TABLE 3 Number, frequency of pre- and postnatal characteristics in isolated atypical genitalia (group 1) and atypical genitalia with additional anomalies (group 2)

Feature	Isolated atypical genitalia (group 1) 22 (38%)	Non-isolated atypical genitalia (group 2) 36 (62%)	Total 58 (%)
Postnatal genital phenotype			
Atypical	20 (91%)	23 (645%)	43 (74%)
Hypospadias ^a	17 (77%)	15 (42%)	32 (55%)
Buried penis	2 (10%)	1 (3%)	3 (5%)
Micropenis	0	1 (3%)	1 (2%)
Other	1 (5%)	6 (17%)	7 (12%)
Normal	2 (9%)	9/32 (28%)	11 (19%)
Unknown	0	4 (11%)	4 (7%)
Genotype			
XY	17 (77%)	27 (75%)	44 (76%)
XX	0	3 (8%)	3 (5%)
Other	0	1 (3%): XXY	1 (2%)
Unknown	5 (24%)	5 (14%)	10 ^{§§} (17%)
Pre/postnatal MCA discrepancy ^b	4 (18%)	4 (11%)	9 (16%)
TOP/IUFD/ED	0/0/1 (5%)	12/3/4 (53%)	20 (34%)
FGR ^c	8 (36%)	16 (44%)	24 (41%)
Twin pregnancy	5 (23%)	2 (6%)	7 (12%)
Endocrine findings			
Abnormal ^d	2 (9%)	2 (6%)	4 (7%)
Normal ^e	12 (55%)	5 (14%)	17 (29%)
Not tested	8 (36%)	29 (81%)	37 (64%)

Abbreviations: ED, early death; FGR, fetal growth restriction; IUFD, intra uterine fetal demise; MCA, multiple congenital anomalies; TOP, termination of pregnancy.

^aOnce a likely epispadias changed to likely hypospadias on subsequent ultrasound.

^bFetuses thought to have isolated atypical genitalia prenatally but were found to have additional anomalies postnatally, or fetuses thought to have MCA prenatally which was not confirmed postnatally; MCA was detected at subsequent ultrasound at 30 w in one.

^cPrenatal fetal growth restriction FGR <10th centile, or BW < p10.

^dNot within the range fitting the chromosomal sex and age.

^eWithin the range fitting the chromosomal sex and age.^f

 $^{
m fss}$ - Case 55 had NIPT without sexchromosomes, followed by targeted SNP array for chromosome 16 and WES MCA

The extragenital anomalies in 62% of patients were usually the reason for referral and exceed the 30%–41% in previous postnatal studies.^{6,7} It emphasizes the importance of thorough US-screening for additional anomalies possibly associated with serious congenital conditions. Some bias cannot be ruled out, as pregnant women are more likely to be referred to a specialized center when atypical genitalia are accompanied by additional anomalies.

We found a significant rate of false positive diagnoses of atypical genitalia. In our study additional targeted US of the genitalia in the isolated group resulted in less false positive diagnoses, namely 9% versus 28% in the group without such targeted US. This high percentage of false positives is in line with other studies.⁴¹ Excluding cases 1, 2, 32, 55, 57 and 58 with a normal genital at a subsequent

prenatal US, would lower the false positive rates, but these cases were included in the study groups so we feel they should not be omitted. These false positives cannot be taken lightly and therefore in the pretest counseling a normal genital at birth was always mentioned as a possible outcome. A dedicated US scan for detailed and systematic evaluation of the urogenital tract in addition to the expert US scan is of importance to lower the rate of false positive diagnoses. When the genitalia appeared normal at birth, the pediatrician would do a routine examination and follow up as indicated depending on eventual non-genital anomalies.

Prenatal diagnosis of an atypical genital causes parental distress,⁴⁰ which may be a reason to decline GC or testing. Finney et al. reported on negative feelings that may be experienced.³ Apart

										וע	AGNC	1212-	- * * 1 1	
FGR	Unknown		No	No	Yes		oZ	No	No			Yes, both twins		
Other	None		Bladder extrophy Non-isolated	None	None		None	None	Cleft palate, motor delay, retrognathia	Non-isolated		None		
Relevant ^s postnatal genetic results	None		CMA: Normal XY profile Full exome: Normal	None	DSD-panel: Heterozygous: MAP3K1 dn likely pathogenic variant		Karyotype: 46,XY FISH buccal smear: XY DSD panel: Heterozygous NR5A1 pathogenic variant,	None	FISH buccal smear: XY	MCA-panel/full exome: no relevant variants:	Methylation analysis and MLPA Silver Russell syndrome: Normal	None ^b		
Endocrine investigations	1				Normal		hypospadias, scrotal testes Normal sertoli cell markers, in hCG-test insufficient increase of testosterone	Normal	Normal			Normal		
Postnatal genital phenotype	Normal		Epispadias, scrotal testes	Proximal hypospadias	Penoscrotal hypospadias, low inserted penis, bifid scrotum, ventral chordae		Scrotal hypospadias, scrotal testes	Buried penis	Scrotal hypospadias, scrotal testes Normal			Penoscrotal hypospadias, scrotal left testes, inguinal hernia at	right testes position unclear	
Results prenatal genetic testing ^a	ı		,	NIPT only	CMA: Normal	XY profile			CMA normal	XY profile		CMA: Normal XY profile both	DSD panel: Child 2: Normal	
Prenatal genetic counseling	Yes		Yes	No	Yes		Yes	No	Yes			Yes		
Year pregnancy Prenatal US	Hypospadias ^b	Family ^c	Hypospadias ^d , maternal DM	Hypospadias	Atypical genital, ambiguous and asymmetric	FGR	Hypospadias	Ambiguous genital	Hypospadias			Hypospadias	FGR,	Twin, concordant
	2017		2018	2018	2017		2017	. 2017	. 2017			. 2018		
ž	÷		ઌં	5.	Ś		α	12.	16.			19.		

VAN BEVER ET AL.

PRENATAL -**DIAGNOSIS**-WILEY____9

(Continues)

TABLE 4 (0	(Continued)							
Year Nr pregnancy	cy Prenatal US	Prenatal genetic counseling	Results prenatal genetic testing ^a	Postnatal genital phenotype	Endocrine investigations	Relevant [®] postnatal genetic results	Other	FGR
21. 2018	Atypical genital, possible hypospadias	N	CMA: Normal	Typical male genitalia		None	Unknown	Unknown
	Twin discordant		XY profile, both					J <i>F</i>
22. 2018	Hypospadias	Yes		Penoscrotal hypospadias, partial bifid, asymmetric scrotum, scrotal testes, at surgery enlarged utriculus with a cervix indication at the tip.	Low AMH, normal inh B, normal androgen synthesis: Partial gonadal dysgenesis	FISH blood [100] XY; Karyotype: 46,XY; DSD panel: Heterozygous: GATA4, class 3 variant	Utriculus with cervix No	2 2
23. 2018	Ambiguous genital	Yes	1	Perineal hypospadias, tissue extending caudally and extra opening. Bifid shawl scrotum, scrotal testes, no raphe	Normal	FISH blood [100] XY; Karyotype: 46,XY; DSD panel: Heteroxeous:	Possibly slightly anterior anus	° Z
25. 2018	Epispadias ^e	Yes	NIPT only	Proximal shaft hypospadias	Normal		None	No
31. 2018	Hypospadias discordant	Yes	CMA: Normal XY profile both	Hypospadias in one		zygous: ZFPM2, ed child)	24 + 6 weeks,	No, neither
	twin		DSD panel: Normal				ED 13/20 days, NEC both	
33. 2019	Hypospadias FGR	Yes		Penoscrotal hypospadias, scrotal testes		None	None	Yes
36. 2019	Hypospadias genital	Yes	1	Penoscrotal hypospadias scrotal testes	Normal	FISH buccal smear [100]: XY Karyogram: 46,XY DSD panel: HSD17B3:pathogenic variant and VUS;	Zone	Yes
39. 2019	Hypospadias	Yes		Scrotal hypospadias	Normal	o11.32 del, lup, caryotype:	Proximal thumb implant, heart defect, feeding problems	°Z
	Twin discordant			Partial bifid scrotum. Left scrotal testis, right scroto-inguinal testis		FISH blood: Ring 18	Non-isolated	
40. 2019	Hypospadias	Yes	CMA: Normal XY	Proximal hypospadias		None	None	No
			pronie	Scrotal testes, underdeveloped corpora cavernosa				

MILEY-DIAGNOSIS

Year Nr pregnanc	Year pregnancy Prenatal US	Prenatal genetic counseling	Prenatal genetic Results prenatal counseling genetic testing ^a	Postnatal genital phenotype	Endocrine investigations	Relevant [®] postnatal genetic results	Other	FGR
42. 2019	Hypospadias, FGR, clomid	Yes	NIPT only	Buried and webbed penis Meatus not visualized, scrotal testes	Normal	None	None	°N
47. 2017	Ambiguous genital, choroid plexus cyst	Yes	QF-PCR: Normal CMA: Normal XY profile	Penoscrotal hypospadias, scrotal testes	Normal	FISH buccal smear: XY profile DSD panel: Normal	Choroid plexus cyst	oZ
49. 2018	Hypospadias, mild in one Twin	Yes	CMA: Normal XY profile	 Likely hypospadias, meatus not Normal visualized⁶, skin deficit ventral shaft, scrotal testes Meatus not visualized⁶, scrotal 	Normal	None	Холе	°Z
50. 2019	Hypospadias	Kes		Low glandular meatus with dysplasia of ventral penis shaft, short skin and curving, scrotal testes	Normal	CMA: Normal XY profile FISH buccal smear [100]: XY DSD panel: Heterozygous VUS, maternal: DHH: DMRT2	None	Ŝ
51. 2019	Hypospadias Later cardiac + cerebellar anomaly	Yes	CMA: Normal XY profile DSD-panel: Normal	CMA: Normal XY Hypospadias, scrotal testes profile DSD-panel: Normal		MCA-panel: homozygous TSEN54, pathogenic variant MAP3K1: VUS, maternal	Ponto-cerebellar hypoplasia, ASDII Not isolated	Yes
Abbreviations: -, not performe sex development; ED, early de multiple congenital anomalies unknown clinical significance. BEC official anomaticon co. T.	Abbreviations: -, not performed; AMH, anti-Müllerian horn sex development; ED, early death; FGR, fetal growth restri multiple congenital anomalies; MLPA, multiple ligation-de unknown clinical significance.	AH, anti-Müll GR, fetal gro A, multiple li	Abbreviations: -, not performed; AMH, anti-Müllerian hormone; ASD II, a sex development; ED, early death; FGR, fetal growth restriction: FGR <10 multiple congenital anomalies; MLPA, multiple ligation-dependant probe unknown clinical significance.		, chromosomal microarray anal uorescent in situ hybridization; enterocolitis; NIPT, noninvasi	rial septum defect type II; CMA, chromosomal microarray analysis; DM, diabetes mellitus; dn, de novo; DSD, disorders/differences o th centile, or BW < p10; FISH, fluorescent in situ hybridization; hCG-test, human chorionic gonadotrophin-test; inh B, inhibin B; MCA amplification; NEC, necrotizing enterocolitis; NIPT, noninvasive prenatal testing; Nr, case number; US, ultrasound; VUS, variant of	ovo; DSD, disorders/diff rophin-test; inh B, inhib r; US, ultrasound; VUS,	erences of in B; MCA, variant of

^aFor official annotation see Table 2 and Tables S1 and S2.

^bProband normal genital at subsequent US.

^cFamily history positive for hypospadias.

^dFamilial epispadias.

^eHypospadias at subsequent US.

^fDue to narrow preputium meatus could not be inspected.

⁸By relevant we mean (likely) pathogenic genetic findings and VUS in genes associated with (part of) the phenotype.

TABLE 4 (Continued)

VV]		IAGNOS	IS					
FGR	N	Unknown	Yes		°Z	°Z	Ŝ	Yes
Other (new and prenatally observed)	Hydronephrosis, Craniosynostosis	ED 33 + 3 w	Cardiac anomaly	ED 6 m	ASDII	Edema lower limbs	Corpus callosum agenesis	Isolated
Relevant postnatal genetic results ^a	Craniosynostosis panel	None	None		None	FISH: XY DSD panel: Normal	DSD panel: Normal	46,XY
Endocrine investigation	1		·			Low Inh B, normal AMH in hCG test: insufficient testosterone response	Normal	
Postnatal genital	Normal	Unknown, after diagnosis not examined again	Glandular hypospadias,	Scrotal testes	Glandular hypospadias with important skin deficit ventrally, non- midline raphe, scrotal testes	Micropenis, scrotal testes	Perineal hypospadias with Normal important ventral curving and partial penoscrotal transposition, large inguinal hernia at right, scrotal testes	Penoscrotal meatus with dysplasia extending to more proximal of meatus, buried aspect of hypospadias in suprapubic fat, pre- mature non-scrotal testes, spontaneously
Relevant results prenatal genetic testing ^a	QF-PCR: Normal CMA: Normal XY profile	QF-PCR/targeted karyotype: Trisomy13, XY	QF-PCR: Normal CMA:15q11.2 del. maternal,XY	Noonan panel analysis: Normal	Late amniocentesis QF-PCR: Normal CMA: Normal XY profile	QF-PCR: Normal CMA: Normal XY profile DNA CFTR: Normal MCA panel: No relevant variant	CMA late: normal XY profile	
Prenatal genetic counseling	Yes	Yes	Yes		Yes	Yes	° Z	° Z
Prenatal US findings and information	Hypospadias ^b , pyelectasia, dilated bladder	Ambiguous genital, holoprosencephaly, AVSD, double urinary system at left, rocker- bottom feet	double		Atypical genital, hypospadias, short femur, cardiac anomaly, dysmorphism	Atypical genital, no uterus, scrotal like structure with raphe and small phallus, anus not well visualized, edema of hands, feet and legs, echogenic intestine	Ambiguous genital, corpus No callosum agenesis	Atypical genital, proximal hypospadias, short tubular bones
Year of pregnancy	2018	2018	2017		2017	2017	2017	2017
ž	~	4	Ч.		6	10.	11.	13.

				DIAGNC	DSIS-WILEY
FGR	Ŝ	Ŷ	Ŷ	°Z	No (Continues)
Other (new and prenatally observed)	Coarctatio, aortae pelvic kidney, hydrocephalus, motor delay	Macrosomia, kidneys: Normal Isolated	Unknown TOP	Umbilical hernia, anterior anus, tracheaschisis no surgical options. ED 1 day 1 day	Horseshoe kidney with cysts, TGV, CLP, TOP
Relevant postnatal genetic results ^a	FISH buccal smear: XY MCA panel: Normal Full exome: VUS hemizygous KLHL15	MCA panel no relevant variant	Unknown	None	None
Endocrine investigation	Normal				
Postnatal genital	Penoscrotal meatus with dysplasia extending to more proximal, with partial bifid scrotum, scrotal testes	Buried penis, scrotal testes	Unknown	Glandular hypospadias, no palpable testes, asymmetric scrotum with skin surplus at right	Normal
Relevant results prenatal genetic testing ^a	Late amniocentesis: CMA: Normal XY profile DNA-analysis SOX9: No mutation	CMA: Normal XY profile MCA panel: Normal QF-PCR: Normal	CMA: dn: 6q27 del and 16p13.3p13.13dup 46,XY,der(6)t(6;16) (q27;p13.13) paternal	QF-PCR: Fetus 2: Normal CMA: Normal XY profile	CMA: arr(13)x3; XY profile
Prenatal genetic counseling	Yes	Yes	Yes	Yes	Yes
Prenatal US findings and information	Atypical genital, proximal hypospadias, aorta stenosis, right ventricle hypertrophy, SUA, short femur, vermis defect/large fossa posterior cyst	Atypical genital, buried penis/micropenis SUA, pyelectasia	Hypospadias, bilateral mild Yes ventriculomegaly, cerebellar hypo-plasia, nuchal fold, prefontal skin edema, cardiac defect, absent gallbladder, syndactyly both hands with cleft right hand	al, no testes curved pression of m, nuchal ydramnios, le, twisted heart, cava and v discordant	Hypospadias, lemon and banana sign, possible spina bifda, CLP, microcephaly. micrognathia, heart displaced to right, multicystic kidneys, empty bladder, polydactyly left hand
Year of pregnancy	. 2017	. 2017	. 2018	. 2018	. 2018
ž	14.	15.	17.	18	20.

TABLE 5 (Continued)

TABLE 5 (C	(Continued)							
Nr Year of pregnancy	Prenatal US findings and information	Prenatal genetic counseling	Relevant results prenatal genetic testing ^a	Postnatal genital	Endocrine investigation	Relevant postnatal genetic results ^a	Other (new and prenatally observed)	FGR
24. 2018	Atypical genital, epispadias-bladder extrophy, spectrum	Yes	CMA normal XY profile	Abnormal, ambiguous	·	None	Anal atresia, OEIS, bladder Yes extrophy, TOP	Yes
26. 2018	Atypical genital, hypospadias, short tubular bones, small thorax	Yes	CMA: Normal XY profile MCA panel: <i>NIPBL</i> : dn pathogenic variant	Hypospadias		Роне	Cornelia de Lange syndrome, dysmorphism TOP	Unknown
27. 2018	Atypical genital, not further specified, hydrocele, other not specified	° Z	VIPT only	Unknown		Pone	None	°Z
28. 2018	Ambiguous genital, pelvic kidneys, short tubular bones	Yes	QF-PCR: Normal CMA: Normal XX profile	Extra skinfold over clitoris Normal	Normal	FISH buccal smear: Normal	Short stature	Yes
29. 2017/18	Ambiguous genital, constriction rings, clubfeet, maternal alcohol abuse and possible cocaine abuse	° Z	QF-PCR: Normal CMA: Normal XX profile	Ambiguous, prominent phallus, small dimple no evident meatus. Prominent labioscrotal walls, no posterior fusion, introitus visible, no palpable gonads		None	Dysmorphism, clubfeet, constrictions TOP	°Z
30. 2018	Ambiguous genital, coarctatio aortae	Yes		Penoscrotal hypospadias, partial bifid scrotum, scrotal testes	Normal	Karyotype: 46,XY DSD panel: Class 3 variant: HOXA13maternal, I	No coarctation, Isolated	°Z
32. 2018	Ambiguous genital Hydrops, ascites, hydrothorax, contractures	Ŷ		Normal female		none	Edema, contractures, retrognathia, IUFD	Yes

MILEY-DIAGNOSIS

FGR	Yes	Yes	Yes	Yes	°Z	Yes	°Z
Other (new and prenatally observed)	Full eyebrows, tight nose, lips and eyelids IUFD		Dysmorphism, cleft palate, low-set, dysplastic ears, IUFD 17+6w	Hernia diaphragmatica	Fam. Stickler syndrome not present TOP	Complex heart defect, accessory adrenal, CLP, possible poly- microgyria, TOP	AVSD
Relevant postnatal genetic results ^a		None	None	None	None	None	Karyotype:47,XY,+21
Endocrine investigation			·				Low basal testosterone and sertolicell-markers, (age 4 months), no hCG test
Postnatal genital	Ambiguous	Distal shaft meatus, dysplasia extending to scrotum, penoscrotal hypospadias, scrotal testes	Ambiguous	Normal	Hypospadias, bifid scrotum	Hypospadias	Hypospadias with bifid scrotum, scrotal testes
Relevant results prenatal genetic testing ^a	QF-PCR: Normal CMA: VUS 3p24.3p24.2 deletion dn, XY profile MCA/ID panel: Normal		QF-PCR: Normal CMA: Normal XX profile	CMA: XY profile	QF-PCR: Normal CMA: Normal XY profile MCA panel: ARX pathogenic variant, maternal	CMA: XY profile;12q14. 1q21.2 deletion dn,	
Prenatal genetic counseling	Yes	Yes	No	° N	Yes	Yes	°N N
Prenatal US findings and / information	Atypical genital, initially female, later proximal hypospadias, FGR hydrops, clubfeet, complex cardiac defect, anemia; maternal diabetes.	Atypical genital, hypospadias, short tubular bones, maternal diabetes	Hypospadias/ambiguous genital, serious FGR, anhydramnios	Atypical genital, suggestive of micropenis, absent gall bladder, hernia diaphragmatica	Ambiguous genital, holoprosencephaly, ventriculomegaly, plexus choroideus cyst	Hypospadias, median CLP, heart (VSD and narrow aorta)	Micropenis with bifid scrotum, AVSD, absent gall bladder, maternal use of psychofarmaca
Year of Nr pregnancy	34. 2019	35. 2019	37. 2019	38. 2019	41. 2019	43. 2019	44. 2019
_							

TABLE 5 (Continued)

(Continues)

TABLE 5 (C	(Continued)							
Year of pregnancy	Prenatal US findings and information	Prenatal genetic counseling	Relevant results prenatal genetic testing ^a	Postnatal genital	Endocrine investigation	Relevant postnatal genetic results ^a	Other (new and prenatally observed)	FGR
45. 2019	Buried penis or micropenis: Corpus callosum agenesis,	No		Normal		None	Corpus callosum agenesis	oZ
46. 2019	Hypospadias, short tubular Yes bones	Yes	NIPT only	Penoscrotal hypospadias, scrotal testes	Normal	QF-PCR: Normal Karyotype:46,XY DSD panel: Normal	Pre-auricular tag Isolated	^s
								No
48. 2017	Hypospadias, omphalocele, maternal hypothyreoidism	Yes	QF-PCR: Normal CMA: Normal XY profile	Midshaft hypospadias with torsion and curving, scrotal testes		FISH buccal smear: XY DSD panel: Normal	Umbilical hernia	°Z
52. 2017	Atypical genital, hypospadias, wide metopic suture, frontal edema, micrognathia, syn-/oligodactyly right hand, small stomach, FGR, ICSI pregnancy	Yes	QF-PCR: Normal CMA: Normal XY profile	Abnormal		NIPBL: Pathogenic variant, dn	Cornelia de Lange syndrome, oligodactyly right hand; syndactyly 2-3, anterior anus, four left lung lobes TOP	Yes
53. 2017	Atypical genital, micropenis or hypospadias, cardiac defect tocker bottom feet, bilateral multiple choroid plexus choroid cysts, nuchal fold, retrognathia, bell- shaped thorax	Yes	14q11.2q32.33 homozygous, UPD14, paternal Karyotype: 46,XY	Unknown		None	Ogata Kagami syndrome, no examination TOP	Unknown
54. 2018	Ambiguous genital, only one iliac bone, external genitalia could not be well evaluated, sacral agenesis, fusion of feet, nuchal fold, abdominal cyst, not typical for an enlarged bladder	Yes	CMA: Normal XY profile MCA panel: No relevant variant	Genital in membrane, hypospadias		None	Sirenomelia, ear tags, abnormal upper limbs, fused feet, renal and sacral agenesis, hemi- vertebrae, abnormal lung lobulation, atresia of esophagus, TOP	Yes

MILEY-DIAGNOSIS

TAB	TABLE 5 (Continued)	ontinued)							
ž	Year of pregnancy	Prenatal US findings and information	Prenatal genetic counseling	Relevant results prenatal genetic testing ^a	Postnatal genital	Endocrine investigation	Relevant postnatal genetic results ^a	Other (new and prenatally observed)	FGR
55.	2018	Atypical genital, unilateral renal agenesis	Yes	NIPT: Indicative for trisomy 16, Targeted SNP-array: 16p13.2q24.2	Normal		None	Short long bones, right renal agenesis TOP	Yes
				homozygous, UPD16paternal ^a MCA panel: Panel:					
56.	56. 2019	Atypical genital, sacral anomalies. FGR.	yes	Normal, CMA normal XY profile	Normal		None	Pre-dysmature, sacral anomalies	Yes
		echogenic intestine		DNA-analysis: <i>CFTR</i> : Normal					
57.	57. 2019	Hypospadias, anencephaly; No discordant twin	No	ı	Normal	1	CMA: Normal XY profile	Anencephaly, child, ED 1d	Yes
58.	58. 2019	Atypical genital, oligohydramnios, double collecting system, intestinal obstruction, IVF pregnancy	Yes	CMA: XXY ^c pattern DNA-analysis CFTR: Normal; MCA/ID panel: Normal	Normal		Full exome: No relevant variant	Anal atresia, sacral dimple, No flexed digit 2-4 left hand, right clubfoot, renal cysts, echogenic intestine, stomach hypoplastic, normal brain, TOP	°Z
Abbre deletiv hCG-t anomá	viations: -, I on; dn, de n est, human lies; Nr, ca:	Abbreviations: -, not performed; AMH, anti-Müllerian hormone; ASD II, atrial septum defect type II; AVSD, atrioventricular septal defect; CLP, cleft lip and palate; CMA, chromosomal microarray analysis; del, deletion; dn, de novo; DSD, disorders/differences of sex development; dup, duplication; ED, early death; FGR, fetal growth restriction: FGR <10th centile, or BW < p10; FISH, fluorescent in situ hybridization; hCG-test, human chorionic gonadotrophin-test; ICSI, intracytoplasmatic sperm injection; inh B, inhibin B; IUFD, intra-uterine fetal demise; IVF, in vitro fertilization; LV, left ventricle; MCA, multiple congenital anomalies; Nr, case number; OEIS, omphalocele-extrophy vesica-imperforate anus-spina bifida; SUA, single umbilical artery; TGV, transposition of the great vessels; TOP, termination of pregnancy; UPD,	üllerian horm ces of sex dev t; ICSI, intrac le-extrophy	ione; ASD II, atrial septur velopment; dup, duplicati ytoplasmatic sperm injec vesica-imperforate anus-	n defect type II; AVSD, atrio on: ED, early death; FGR, fet tion; inh B, inhibin B; IUFD, i spina bifida; SUA, single um	ventricular septal defect; cal growth restriction: FG ntra-uterine fetal demise bilical artery; TGV, trans	CLP, cleft lip and palate; CM R <10th centile, or BW < p1 :: IVF, in vitro fertilization; LN :position of the great vessel	 AA, chromosomal microarray 10; FISH, fluorescent in situ h V, left ventricle; MCA, multip s; TOP, termination of pregn 	analysis; del, ıybridization; le congenital ancy; UPD,

uniparental disomy; US, ultrasound; VSD, ventricle septum defect; VUS, variant of unknown clinical significance. ^aFor official annotation see Table 2 and Tables S1 and S2.

^bChild normal genital at 30 weeks US.

^cConsidered an incidental finding.

from the worries that parents may have with any kind of prenatal US diagnosis, in case of atypical genitalia additional distress may be related to psychosocial aspects of DSD such as unease because of the atypical appearance of the genital and body, reduced fertility, impaired sexual functioning and challenges in psychosexual development. Counseling to reinforce parental coping abilities can be helpful to reduce discomfort related to these psychosocial aspects.

All genetic diagnoses in our cohort can nowadays be made prenatally, if parents opt for prenatal invasive testing with both CMA and panel analysis of MCA/ID related genes. CMA is routinely offered in pregnancies with US anomalies and this prenatal panel analysis, is increasingly becoming common practice in several countries,⁸⁻¹⁷ although offered for variable indications. De Koning et al.⁴² have previously shown how prenatal exome testing may affect parental decision making and may support pre- and perinatal management. Diderich et al.⁸ argued that especially in pregnancies with a milder phenotype, priority prenatal testing using this technique may affect decision-making, particularly whether or not to opt for a TOP. It can also provide guidance for obstetric and postnatal management, such as resuscitation, intubation or emergency surgery.⁴² In this study in only 36% of pregnancies panel analysis was offered, due to the fact that prenatal priority panel testing was not yet available at the beginning of the study period and sometimes couples were referred during later stages of pregnancy. Although the chance of an IF is generally estimated to be low^{43,44} the impact can be very high. The homozygous pathogenic variant in TSEN54 would have been an IF, if detected prenatally before the brain anomaly was visualized, but it might have been of great importance for the parents. While information on possible genetic syndromes may induce unnecessary worries in parents expecting a child with a possible mild phenotype, not informing on such syndromes may lead to no prenatal genetic testing and parents being confronted postnatally with a child with a serious lifelong condition. Thus, careful counseling on the pros and cons of extensive genetic testing is essential and we recommend this be provided by a clinical geneticist.

The high rate of twin pregnancies in the current study is in agreement with the previously reported association between hypospadias and twin pregnancies.⁴⁵ We also confirmed the known association between FGR and hypospadias,⁴⁵ with a high incidence of FGR or low birth weight in both groups (see Table 3).

4.1 | Limitations of the study

As mentioned above, our study included only fetuses diagnosed with atypical genital in our center or referred to us and therefore the frequency of additional structural anomalies may be overestimated. The retrospective single-center design may potentially have led to selection bias as well.

It is also important to realize that routine rapid prenatal gene panel analysis was not available in our center before 2018, so in the first study year patients who had already decided on continuation or TOP based on the US findings and those that were referred to the clinical geneticist too late in pregnancy for TOP, were not routinely offered this prenatal WES. Not in all cases of unexplained TOP or IUFD, parents came for additional GC and testing. Therefore, in the studied period, not all couples had the same prenatal options. Prenatal gene panels gradually became more readily available from 2018 to 2019 and the flow was adjusted and optimized. This may have influenced the percentage of prenatal diagnoses and the percentage of couples opting for GC.

VUS are not routinely reported prenatally, because these are not considered actionable and incomplete phenotypic information does not always allow for clinical validation of such findings. Therefore, it is important to realize that repeating the genetic evaluation of the child postnatally, after renewed counseling, should be considered, allowing the laboratory to reanalyze and report eventual VUS in case a particular diagnosis is suspected.

4.1.1 | General limitation

Prenatal evaluation of the genital area is not easy. Normal genitalia were present in 20% (11/54) of cases from whom information on the postnatal genital phenotype was available, in line with the 21% reported in literature.⁴¹ There is also a difference in specificity of a targeted US scan for detailed systematic evaluation of the urogenital tract as offered as extra investigation for fetuses in group 1 and an expert advanced US scan used for all fetuses. This may have contributed to the differences between the two groups.

5 | SUGGESTIONS FOR FUTURE STUDIES AND MANAGEMENT

The impact of prenatal US or genetic findings, including IF, on parents and their motivation to choose or decline GC and testing merit further studies. Although we have not systematically assessed the main concerns of the parents, several parents stated they were concerned not only about health, but also about their child's psychosocial wellbeing. Frequently parents asked about surgical reconstruction options during prenatal counseling. Whether or not changes in the availability of postnatal treatment options, including early surgery, will affect the uptake of prenatal counseling, testing and continuation of the pregnancy, needs to be studied.46 Studies from other centers or prospective multicentre studies reporting on their policy in case of prenatal detection of atypical genitalia, prenatal phenotypes, systematic clinical and genetic follow-up would be of a great value, make numbers more robust and may possibly indicate reasons for differences in choices. In addition, it will be important to evaluate the diagnostic yield over time, as both US techniques and genetic testing possibilities will continue to evolve which may affect diagnostic yield and the rate of false positives. It has been argued that prenatal diagnostic procedures and management may lead to unnecessary

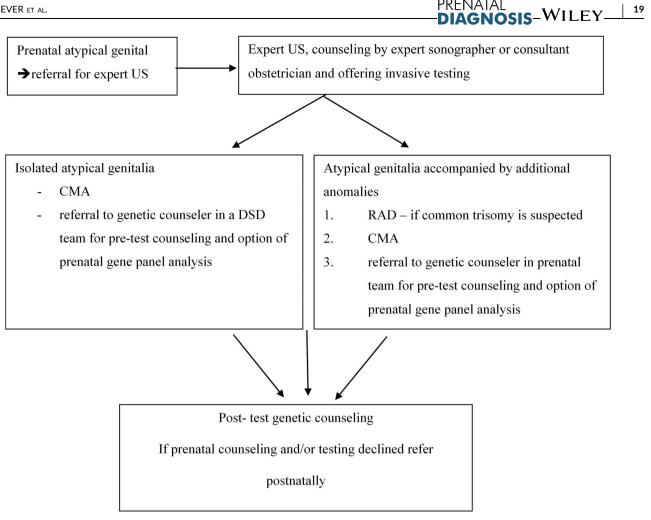


FIGURE 4 Suggested flow chart after detection of prenatal atypical genitalia. The group with isolated atypical genitalia is more likely to indeed have an isolated anomaly and may therefore benefit more from a specific counseling by the DSD team focused on postnatal management of atypical genitalia. CMA, chromosomal microarray analysis; DSD, disorders or differences of sex development; RAD, rapid aneuploidy detection; US, ultrasound

medicalization of DSD⁴⁷ or TOP, induced by parental fear of being unable to cope with consequences of raising a child with a congenital condition. We advise careful and extensive GC by a clinical geneticist and offering invasive testing in all prenatal cases (Figure 4). In this study, prenatal diagnostic testing did not lead to termination of any of the pregnancies with isolated fetal genital anomalies.

CONCLUSION 6

Upon US diagnosis of fetal atypical genitalia, expert US screening and invasive diagnostic testing, including CMA and gene panel analysis, should be offered in the context of counseling by a clinical geneticist, irrespective of the presence of concurrent US anomalies. The aim of such testing is to provide genetic information to the prospective parents -to find or rule out as much as possible an underlying genetic cause with possible serious consequences, which can guide further pregnancy management and parental decision making.

ACKNOWLEDGMENTS

We thank R. Pfundt (RadboudUMC), E.J.W. Redeker, (Amsterdam UMC), M.A. van Slegtenhorst, A.R.M. van Opstal, L.J.C.M. van Zutven, E. Blom, H.B. Beverloo (Erasmus MC) for their part in analysis of part of the samples and A.M.S. Joosten for counseling some of the parents.

PRENATAL

CONFLICT OF INTEREST

The authors declared that they have no conflicts of interest to this work.

DATA AVAILABILITY STATEMENT

Our institution does not allow for sharing raw or processed DNA data.

ETHICS STATEMENT

For this study no ethical committee needed to be involved as no new test has been performed. We only looked retrospectively at the diagnostic outcomes, which were already communicated to participants and which were anonymized and counted for this study.

20 WILEY-DIAGNOSIS

ORCID

Yolande van Bever https://orcid.org/0000-0003-2002-9145 Karin E. M. Diderich https://orcid.org/0000-0003-2637-9998 Malgorzata I. Srebniak https://orcid.org/0000-0003-3429-6156

REFERENCES

- Lee PA, Houk CP, Ahmed SF, Hughes IA. International consensus conference on intersex organized by the Lawson Wilkins Pediatric Endocrine Society and the European Society for Paediatric Endocrinology. Consensus statement on management of intersex disorders. International consensus conference on intersex. *Pediatrics*. 2006;118(2):e488-e500. https://doi.org/10.1542/peds.2006-0738
- Bever YV, Brüggenwirth HT, Wolffenbuttel KP, et al. Underreported aspects of diagnosis and treatment addressed in the Dutch-Flemish guideline for comprehensive diagnostics in disorders/ differences of sex development. J Med Genet. 2020;57(9):581-589. https://doi.org/10.1136/jmedgenet-2019-106354
- Finney EL, Finlayson C, Rosoklija I, et al. Prenatal detection and evaluation of differences of sex development. J Pediatr Urol. 2020;16(1):89-96. https://doi.org/10.1016/j.jpurol.2019.11.005
- Adam MP, Fechner PY, Ramsdell LA, et al. Ambiguous genitalia: what genetic testing is practical? Am J Med Genet A. 2012;158A(6): 1337-1343. https://doi.org/10.1002/ajmg.a.35338
- Sato T, Ishii T, Yamaguchi Y, et al. Case report: prenatal genetic counseling to parents of fetuses suspected of having ambiguous genitalia. *Front Pediatr.* 2021;8:569548. https://doi.org/10.3389/ fped.2020.569548
- Alimussina M, Diver LA, McGowan R, Ahmed FA. Genetic testing of XY newborns with a suspected disorder of sex development. *Curr Opin Pediatr.* 2018;30(4):548-557. https://doi.org/10.1097/mop.00 0000000006644
- Heeley JM, Hollander AS, Austin PF, Merritt DF, Wesevich VG, Amarillo IE. Risk association of congenital anomalies in patients with ambiguous genitalia: a 22-year single-center experience. J Pediatr Urol. 2018;14(2):153.e1-153.e7. https://doi.org/10.1016/j.jpurol. 2017.09.027
- Diderich K, Joosten M, Govaerts L, et al. Is it feasible to select fetuses for prenatal WES based on the prenatal phenotype? *Prenat Diagn*. 2019;39(11):1039-1040. https://doi.org/10.1002/pd.5522
- Lord J, McMullan DJ, Eberhardt RY, et al. Prenatal exome sequencing analysis in fetal structural anomalies detected by ultrasonography (PAGE): a cohort study. *Lancet.* 2019;393(10173): 747-757.
- Petrovski S, Aggarwal V, Giordano J, et al. Whole-exome sequencing in the evaluation of fetal structural anomalies: a prospective cohort study. *Lancet.* 2019;393(10173):758-767. https://doi.org/10.1016/ s0140-6736(18)32042-7
- International Society for Prenatal Diagnosis, Society for Maternal and Fetal Medicine, Perinatal Quality Foundation. Joint Position Statement from the International Society for Prenatal Diagnosis (ISPD), the Society for Maternal Fetal Medicine (SMFM), and the Perinatal Quality Foundation (PQF) on the use of genome-wide sequencing for fetal diagnosis. *Prenat Diagn*. 2018;38(1):6-9. https://doi.org/10.1002/pd.5195
- Lei TY, Fu F, Li R, et al. Whole-exome sequencing in the evaluation of fetal congenital anomalies of the kidney and urinary tract detected by ultrasonography. *Prenat Diagn*. 2020;40(10):1290-1299. https:// doi.org/10.1002/pd.5737
- Aarabi M, Sniezek O, Jiang H, et al. Importance of complete phenotyping in prenatal whole exome sequencing. *Hum Genet.* 2018;137(2):175-181. https://doi.org/10.1007/s00439-017-1860-1
- 14. Best S, Wou K, Vora N, Van der Veyver IB, Wapner R, Chitty LS. Promises, pitfalls and practicalities of prenatal whole exome

sequencing. Prenat Diagn. 2018;38(1):10-19. https://doi.org/10. 1002/pd.5102

- Becher N, Andreasen L, Sandager P, et al. Implementation of exome sequencing in fetal diagnostics—data and experiences from a tertiary center in Denmark. Acta Obstet Gynecol Scand. 2020;99(6): 783-790. https://doi.org/10.1111/aogs.13871
- Monaghan KG, Leach NT, Pekarek D, Prasad P, Rose NC. The use of fetal exome sequencing in prenatal diagnosis: a points to consider document of the American College of Medical Genetics and Genomics (ACMG). *Genet Med.* 2020;22(4):675-680. https://doi.org/10. 1038/s41436-019-0731-7
- Jelin AC, Vora N. Whole exome sequencing: applications in prenatal genetics. Obstet Gynecol Clin North Am. 2018;45(1):69-81. https:// doi.org/10.1016/j.ogc.2017.10.003
- Abou Tayoun A, Mason-Suares H. Considerations for whole exome sequencing unique to prenatal care. *Hum Genet*. 2020;139(9): 1149-1159. https://doi.org/10.1007/s00439-019-02085-7
- Vears DF, Niemiec E, Howard HC, Borry P. Analysis of VUS reporting, variant reinterpretation and recontact policies in clinical genomic sequencing consent forms. *Eur J Hum Genet*. 2018;26(12): 1743-1751. https://doi.org/10.1038/s41431-018-0239-7
- Wou K, Weitz T, McCormack C, et al. Parental perceptions of prenatal whole exome sequencing (PPPWES) study. *Prenat Diagn*. 2018;38(11):801-811. https://doi.org/10.1002/pd.5332
- Quinlan-Jones E, Hillman SC, Kilby MD, Greenfield SM. Parental experiences of prenatal whole exome sequencing (WES) in cases of ultrasound diagnosed fetal structural anomaly. *Prenat Diagn*. 2017;37(12):1225-1231. https://doi.org/10.1002/pd.5172
- NVOG richtlijn foetale groeirestrictie. 2017. https://www.nvog. nl/wp-content/uploads/2017/12/Foetate-groeirestricie-FGR-15-09-2017.pdf
- https://www.erasmusmc.nl/nl-nl/patientenzorg/laboratoriumspecialismen/klinische-genetica
- Srebniak MI, Diderich KE, Joosten M, et al. Prenatal SNP array testing in 1000 fetuses with ultrasound anomalies: causative, unexpected and susceptibility CNVs. Eur J Hum Genet. 2016;24(5): 645-651. https://doi.org/10.1038/ejhg.2015.193
- Riggs ER, Andersen EF, Cherry AM, et al. Technical standards for the interpretation and reporting of constitutional copy-number variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics (ACMG) and the Clinical Genome Resource (ClinGen). *Genet Med.* 2020;22(2):245-257. https://doi.org/ 10.1038/s41436-019-0686-8
- Richards S, Aziz N, Bale S, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. *Genet Med.* 2015;17(5): 405-424. https://doi.org/10.1038/gim.2015.30
- van Bever Y, Brüggenwirth H, Dessens AB, et al. Multidisciplinaire richtlijn Diagnostiek bij disorders/differences of sex development (DSD). 2017. https://www.vkgn.org/files/93/Richtlijn%20DSD2017. pdf
- Ahmed SF, Achermann JC, Arlt W, et al. Society for Endocrinology UK guidance on the initial evaluation of an infant or an adolescent with a suspected disorder of sex development (Revised 2015). *Clin Endocrinol (Oxf)*. 2016;84(5):771-788. https://doi.org/10.1111/cen. 12857
- 29. http://srhr.org/fetalgrowthcalculator/
- van der Veken LT, Dieleman MM, Douben H, et al. Low grade mosaic for a complex supernumerary ring chromosome 18 in an adult patient with multiple congenital anomalies. *Mol Cytogenet*. 2010;3(1): 13. https://doi.org/10.1186/1755-8166-3-13
- Bashamboo A, McElreavey K. Human sex-determination and disorders of sex-development (DSD). Semin Cell Dev Biol. 2015;45:77-83. https://doi.org/10.1016/j.semcdb.2015.10.030

- Namavar Y, Barth PG, Kasher PR, et al. Clinical, neuroradiological and genetic findings in pontocerebellar hypoplasia. *Brain*. 2011;134(Pt 1):143-156. https://doi.org/10.1093/brain/awq287
- Emer CS, Duque JA, Müller AL, et al. Prevalência das malformações congênitas identificadas em fetos com trissomia dos cromossomos 13, 18 e 21 [Prevalence of congenital abnormalities identified in fetuses with 13, 18 and 21 chromosomal trisomy]. *Rev Bras Ginecol Obstet.* 2015;37(7):333-338. https://doi.org/10.1590/s0100-720320 150005373
- Deardorff MA, Noon SE, Krantz ID. Cornelia de Lange syndrome. In: Adam MP, Ardinger HH, Pagon RA, et al, eds. *GeneReviews®* [*Internet*]. University of Washington; 1993–2021. 2005 Sep 16 [updated 2020 Oct 15]. PMID: 20301283.
- Sherr EH. The ARX story (epilepsy, mental retardation, autism, and cerebral malformations): one gene leads to many phenotypes. *Curr Opin Pediatr.* 2003;15(6):567-571. https://doi.org/10.1097/0000 8480-200312000-00004
- Kagami M, Sekita Y, Nishimura G, et al. Deletions and epimutations affecting the human 14q32.2 imprinted region in individuals with paternal and maternal upd(14)-like phenotypes. *Nat Genet*. 2008;40(2):237-242. https://doi.org/10.1038/ng.2007.56
- Williams SG, Nakev A, Guo H, et al. Association of congenital cardiovascular malformation and neuropsychiatric phenotypes with 15q11.2 (BP1-BP2) deletion in the UK Biobank. *Eur J Hum Genet.* 2020;28(9):1265-1273. https://doi.org/10.1038/s41431-020-0626-8
- Lynch SA, Foulds N, Thuresson AC, et al. The 12q14 microdeletion syndrome: six new cases confirming the role of HMGA2 in growth. *Eur J Hum Genet*. 2011;19(5):534-539. https://doi.org/10.1038/ejhg. 2010.215
- Bhatta S, Medows M, Acharya Y. Isolated chromosome 6q27 terminal deletion syndrome. *Cureus*. 2020;12(5):e8103. https://doi.org/ 10.7759/cureus.8103
- Klapwijk JE, Srebniak MI, Go ATJI, et al. How to deal with uncertainty in prenatal genomics: a systematic review of guidelines and policies. *Clin Genet.* 2021;100(6):647-658. https://doi.org/10.1111/ cge.14010
- Cheikhelard A, Luton D, Philippe-Chomette P, et al. How accurate is the prenatal diagnosis of abnormal genitalia? J Urol. 2000;164(3 Pt 2):984-987. https://doi.org/10.1097/00005392-200009020-00016

- 42. de Koning MA, Haak MC, Adama van Scheltema PN, et al. From diagnostic yield to clinical impact: a pilot study on the implementation of prenatal exome sequencing in routine care. *Genet Med.* 2019; 21(10):2303-2310. https://doi.org/10.1038/s41436-019-0499-9
- van der Schoot V, Haer-Wigman L, Feenstra I, et al. Lessons learned from unsolicited findings in clinical exome sequencing of 16, 482 individuals. *Eur J Hum Genet*. 2021;30(2):170-177. https://doi.org/10. 1038/s41431-021-00964-0
- Haer-Wigman L, van der Schoot V, Feenstra I, et al. 1 in 38 individuals at risk of a dominant medically actionable disease. *Eur J Hum Genet.* 2019;27(2):325-330. https://doi.org/10.1038/s41431-018-0284-2
- Visser R, Burger NC, van Zwet EW, et al. Higher incidence of hypospadias in monochorionic twins. *Twin Res Hum Genet.* 2015; 18(5):591-594. https://doi.org/10.1017/thg.2015.55
- Wolffenbuttel KP. A holistic approach in children with DSD. J Pediatr Urol. 2019;15(2):124-125. https://doi.org/10.1016/j.jpurol. 2019.02.022
- Feder EK. Normalizing medicine: between "intersexuals" and individuals with "disorders of sex development". *Health Care Anal.* 2009;17(2):134-143. https://doi.org/10.1007/s10728-009-0111-6
- 48. http://www.bio-bwa.sourceforge.net/
- 49. http://www.broadinstitute.org/gatk/
- 50. https://varnomen.hgvs.org

SUPPORTING INFORMATION

Additional supporting information can be found online in the Supporting Information section at the end of this article.

How to cite this article: van Bever Y, Groenenberg IAL, Knapen MFCM, et al. Prenatal ultrasound finding of atypical genitalia: counseling, genetic testing and outcomes. *Prenat Diagn*. 2022;1-21. https://doi.org/10.1002/pd.6205