17 research outputs found

    An early history of T cell-mediated cytotoxicity.

    Get PDF
    After 60 years of intense fundamental research into T cell-mediated cytotoxicity, we have gained a detailed knowledge of the cells involved, specific recognition mechanisms and post-recognition perforin-granzyme-based and FAS-based molecular mechanisms. What could not be anticipated at the outset was how discovery of the mechanisms regulating the activation and function of cytotoxic T cells would lead to new developments in cancer immunotherapy. Given the profound recent interest in therapeutic manipulation of cytotoxic T cell responses, it is an opportune time to look back on the early history of the field. This Timeline describes how the early findings occurred and eventually led to current therapeutic applications

    Iron Behaving Badly: Inappropriate Iron Chelation as a Major Contributor to the Aetiology of Vascular and Other Progressive Inflammatory and Degenerative Diseases

    Get PDF
    The production of peroxide and superoxide is an inevitable consequence of aerobic metabolism, and while these particular "reactive oxygen species" (ROSs) can exhibit a number of biological effects, they are not of themselves excessively reactive and thus they are not especially damaging at physiological concentrations. However, their reactions with poorly liganded iron species can lead to the catalytic production of the very reactive and dangerous hydroxyl radical, which is exceptionally damaging, and a major cause of chronic inflammation. We review the considerable and wide-ranging evidence for the involvement of this combination of (su)peroxide and poorly liganded iron in a large number of physiological and indeed pathological processes and inflammatory disorders, especially those involving the progressive degradation of cellular and organismal performance. These diseases share a great many similarities and thus might be considered to have a common cause (i.e. iron-catalysed free radical and especially hydroxyl radical generation). The studies reviewed include those focused on a series of cardiovascular, metabolic and neurological diseases, where iron can be found at the sites of plaques and lesions, as well as studies showing the significance of iron to aging and longevity. The effective chelation of iron by natural or synthetic ligands is thus of major physiological (and potentially therapeutic) importance. As systems properties, we need to recognise that physiological observables have multiple molecular causes, and studying them in isolation leads to inconsistent patterns of apparent causality when it is the simultaneous combination of multiple factors that is responsible. This explains, for instance, the decidedly mixed effects of antioxidants that have been observed, etc...Comment: 159 pages, including 9 Figs and 2184 reference

    Physical conditions and chemical abundances in photoionized nebulae from optical spectra

    Full text link
    This chapter presents a review on the latest advances in the computation of physical conditions and chemical abundances of elements present in photoionized gas H II regions and planetary nebulae). The arrival of highly sensitive spectrographs attached to large telescopes and the development of more sophisticated and detailed atomic data calculations and ionization correction factors have helped to raise the number of ionic species studied in photoionized nebulae in the last years, as well as to reduce the uncertainties in the computed abundances. Special attention will be given to the detection of very faint lines such as heavy-element recombination lines of C, N and O in H II regions and planetary nebulae, and collisionally excited lines of neutron-capture elements (Z >30) in planetary nebulae.Comment: Book Chapter. 31 pages. 6 Figures. Accepted for publication in the book "Reviews in Frontiers of Modern Astrophysics: From Space Debris to Cosmology" (eds Kabath, Jones and Skarka; publisher Springer Nature) funded by the European Union Erasmus+ Strategic Partnership grant "Per Aspera Ad Astra Simul" 2017-1-CZ01-KA203-03556

    Systems pathology-taking molecular pathology into a new dimension

    No full text
    The wealth of morphological, histological, and molecular data from human cancers available to pathologists means that pathology is poised to become a truly quantitative systems science. By measuring morphological parameters such as tumor stage and grade, and by measuring molecular biomarkers such as hormone receptor status, pathologists have sometimes accurately predicted what will happen to a patient's tumor. While 'omic' technologies have seemingly improved prognostication and prediction, some molecular 'signatures' are not useful in clinical practice because of the failure to independently validate these approaches. Many associations between gene 'signatures' and clinical response are correlative rather than mechanistic, and such associations are poor predictors of how cellular biochemical networks will behave in perturbed, diseased cells. Using systems biology, the dynamics of reactions in cells and the behavior between cells can be integrated into models of cancer. The challenge is how to integrate multiple data from the clinic into tractable models using mathematical models and systems biology, and how to make the resultant model sufficiently robust to be of practical use. We discuss the difficulties in using mathematics to model cancer, and review some approaches that may be used to allow systems biology to be successfully applied in the clinic

    Tissue Damage Caused by the Direct and Indirect Action of Complement

    No full text
    corecore