37 research outputs found
Mild Transient Hypercapnia as a Novel Fear Conditioning Stimulus Allowing Re-Exposure during Sleep
Introduction:Studies suggest that sleep plays a role in traumatic memories and that treatment of sleep disorders may help alleviate symptoms of posttraumatic stress disorder. Fear-conditioning paradigms in rodents are used to investigate causal mechanisms of fear acquisition and the relationship between sleep and posttraumatic behaviors. We developed a novel conditioning stimulus (CS) that evoked fear and was subsequently used to study re-exposure to the CS during sleep.Methods:Experiment 1 assessed physiological responses to a conditioned stimulus (mild transient hypercapnia, mtHC; 3.0% CO2; n = 17)+footshock for the purpose of establishing a novel CS in male FVB/J mice. Responses to the novel CS were compared to tone+footshock (n = 18) and control groups of tone alone (n = 17) and mild transient hypercapnia alone (n = 10). A second proof of principle experiment re-exposed animals during sleep to mild transient hypercapnia or air (control) to study sleep processes related to the CS.Results:Footshock elicited a response of acute tachycardia (30-40 bpm) and increased plasma epinephrine. When tone predicted footshock it elicited mild hypertension (1-2 mmHg) and a three-fold increase in plasma epinephrine. When mtHC predicted footshock it also induced mild hypertension, but additionally elicited a conditioned bradycardia and a smaller increase in plasma epinephrine. The overall mean 24 hour sleep-wake profile was unaffected immediately after fear conditioning.Discussion:Our study demonstrates the efficacy of mtHC as a conditioning stimulus that is perceptible but innocuous (relative to tone) and applicable during sleep. This novel model will allow future studies to explore sleep-dependent mechanisms underlying maladaptive fear responses, as well as elucidate the moderators of the relationship between fear responses and sleep. © 2013 McDowell et al
Differential effects of non-REM and REM sleep on memory consolidation?
Sleep benefits memory consolidation. Previous theoretical accounts have proposed a differential role of slow-wave sleep (SWS), rapid-eye-movement (REM) sleep, and stage N2 sleep for different types of memories. For example the dual process hypothesis proposes that SWS is beneficial for declarative memories, whereas REM sleep is important for consolidation of non-declarative, procedural and emotional memories. In fact, numerous recent studies do provide further support for the crucial role of SWS (or non-REM sleep) in declarative memory consolidation. However, recent evidence for the benefit of REM sleep for non-declarative memories is rather scarce. In contrast, several recent studies have related consolidation of procedural memories (and some also emotional memories) to SWS (or non-REM sleep)-dependent consolidation processes. We will review this recent evidence, and propose future research questions to advance our understanding of the role of different sleep stages for memory consolidation
Learning new sensorimotor contingencies:Effects of long-term use of sensory augmentation on the brain and conscious perception
Theories of embodied cognition propose that perception is shaped by sensory stimuli and by the actions of the organism. Following sensorimotor contingency theory, the mastery of lawful relations between own behavior and resulting changes in sensory signals, called sensorimotor contingencies, is constitutive of conscious perception. Sensorimotor contingency theory predicts that, after training, knowledge relating to new sensorimotor contingencies develops, leading to changes in the activation of sensorimotor systems, and concomitant changes in perception. In the present study, we spell out this hypothesis in detail and investigate whether it is possible to learn new sensorimotor contingencies by sensory augmentation. Specifically, we designed an fMRI compatible sensory augmentation device, the feelSpace belt, which gives orientation information about the direction of magnetic north via vibrotactile stimulation on the waist of participants. In a longitudinal study, participants trained with this belt for seven weeks in natural environment. Our EEG results indicate that training with the belt leads to changes in sleep architecture early in the training phase, compatible with the consolidation of procedural learning as well as increased sensorimotor processing and motor programming. The fMRI results suggest that training entails activity in sensory as well as higher motor centers and brain areas known to be involved in navigation. These neural changes are accompanied with changes in how space and the belt signal are perceived, as well as with increased trust in navigational ability. Thus, our data on physiological processes and subjective experiences are compatible with the hypothesis that new sensorimotor contingencies can be acquired using sensory augmentation
La fonction du sommeil paradoxal : faits et hypothèses
Hennevin E., Leconte Pierre. La fonction du sommeil paradoxal : faits et hypothèses. In: L'année psychologique. 1971 vol. 71, n°2. pp. 489-519
Conditioned changes in the basal forebrain: Relations with learning-induced cortical plasticity
Interaction between hippocampal and striatal systems predicts subsequent consolidation of motor sequence memory.
The development of fast and reproducible motor behavior is a crucial human capacity. The aim of the present study was to address the relationship between the implementation of consistent behavior during initial training on a sequential motor task (the Finger Tapping Task) and subsequent sleep-dependent motor sequence memory consolidation, using functional magnetic resonance imaging (fMRI) and total sleep deprivation protocol. Our behavioral results indicated significant offline gains in performance speed after sleep whereas performance was only stabilized, but not enhanced, after sleep deprivation. At the cerebral level, we previously showed that responses in the caudate nucleus increase, in parallel to a decrease in its functional connectivity with frontal areas, as performance became more consistent. Here, the strength of the competitive interaction, assessed through functional connectivity analyses, between the caudate nucleus and hippocampo-frontal areas during initial training, predicted delayed gains in performance at retest in sleepers but not in sleep-deprived subjects. Moreover, during retest, responses increased in the hippocampus and medial prefrontal cortex in sleepers whereas in sleep-deprived subjects, responses increased in the putamen and cingulate cortex. Our results suggest that the strength of the competitive interplay between the striatum and the hippocampus, participating in the implementation of consistent motor behavior during initial training, conditions subsequent motor sequence memory consolidation. The latter process appears to be supported by a reorganisation of cerebral activity in hippocampo-neocortical networks after sleep
