147 research outputs found

    Neural correlates of familiarity-based associative retrieval

    Get PDF
    The current study compared the neural correlates of associative retrieval of compound (unitized) stimuli and unrelated (non-unitized) stimuli. Although associative recognition was nearly identical for compounds and unrelated pairs, accurate recognition of these different pair types was associated with activation in distinct regions within the medial temporal lobe (MTL). Recognition of previously presented compound words was associated with left perirhinal activity, whereas recognition of unrelated word pairs was associated with activity in left hippocampus. These results provide evidence that perirhinal cortex mediates familiarity-based associative memory of stimuli unitized at encoding, while the hippocampus is required for recollection-based associative memory

    Differential neural activity during search of specific and general autobiographical memories elicited by musical cues

    Get PDF
    Previous neuroimaging studies that have examined autobiographical memory specificity have utilized retrieval cues associated with prior searches of the event, potentially changing the retrieval processes being investigated. In the current study, musical cues were used to naturally elicit memories from multiple levels of specificity (i.e., lifetime period, general event, and event-specific). Sixteen young adults participated in a neuroimaging study in which they retrieved autobiographical memories associated with musical cues. These musical cues led to the retrieval of highly emotional memories that had low levels of prior retrieval. Retrieval of all autobiographical memory levels was associated with activity in regions in the autobiographical memory network, specifically the ventromedial prefrontal cortex, posterior cingulate, and right medial temporal lobe. Owing to the use of music, memories from varying levels of specificity were retrieved, allowing for comparison of event memory and abstract personal knowledge, as well as comparison of specific and general event memory. Dorsolateral and dorsomedial prefrontal regions were engaged during event retrieval relative to personal knowledge retrieval, and retrieval of specific event memories was associated with increased activity in the bilateral medial temporal lobe and dorsomedial prefrontal cortex relative to retrieval of general event memories. These results suggest that the initial search processes for memories of different specificity levels preferentially engage different components of the autobiographical memory network. The potential underlying causes of these neural differences are discussed

    Differential effects of arousal in positive and negative autobiographical memories

    Get PDF
    Autobiographical memories are characterized by a range of emotions and emotional reactions. Recent research has demonstrated that differences in emotional valence (positive v. negative emotion) and arousal (the degree of emotional intensity) differentially influence the retrieved memory narrative. Although the mnemonic effects of valence and arousal have both been heavily studied, it is currently unclear whether the effects of emotional arousal are equivalent for positive and negative autobiographical events. In the current study, multilevel models were used to examine differential effects emotional valence and arousal on the richness of autobiographical memory retrieval both between and within subjects. Thirty-four young adults were asked to retrieve personal autobiographical memories associated with popular musical cues and to rate the valence, arousal, and richness of these events. The multilevel analyses identified independent influences of valence and intensity upon retrieval characteristics at the within and between subject levels. In addition, the within subject interactions between valence and arousal highlighted differential effects of arousal for positive and negative memories. These findings have important implications for future studies of emotion and memory, highlighting the importance of considering both valence and arousal when examining the role emotion plays in the richness of memory representation

    Innovations in Regulatory Permit Processes for Aquatic Habitat Protection and Restoration in Washington

    Get PDF
    Innovations in Regulatory Permit Processes for Aquatic Habitat Protection and Restoration in Washington Aquatic habitats are vital for the region’s salmon, steelhead, and Southern Resident Killer Whales. Regulatory permitting is our principal mechanism for protecting these ecosystems from human activities. Projects that affect aquatic habitat are subject to a complex and often lengthy local, state, and federal regulatory process commonly intersecting more than nine agencies and consulting with tribes. Each permit has specific requirements for application, review, and compliance, shaped by a constantly evolving legal, social and economic context. Permitting processes may discourage or delay restoration projects, reducing the effectiveness of state and federal restoration funding. On the other hand, pressure to minimize regulatory impacts on private activities may result in development that damages the very resources we are attempting to restore. Recognizing these challenges, three pilot efforts are working to remove barriers to restoration and improve protection. With support from the Puget Sound Federal Task Force, a Multi-Agency Review Team of federal and state regulatory agencies is testing a coordinated, collaborative approach to permitting marine shoreline enhancement. The Washington Department of Fish and Wildlife has been authorized to establish a four-year program to streamline permitting for qualifying fish habitat projects. Over the same time period, NOAA Fisheries has been developing tools to quantify nearshore habitat services. Such tools allow for shoreline development that has unavoidable long-term impacts on shoreline habitats to offset those impacts by supporting restoration. Panelists will present on these three programs and their lessons learned to date and open a discussion about how we can continue to improve regulatory permitting as a critical component of our ecosystem recovery system

    Event-Related Functional Magnetic Resonance Imaging Changes during Relational Retrieval in Normal Aging and Amnestic Mild Cognitive Impairment

    Get PDF
    The earliest cognitive deficits observed in amnestic mild cognitive impairment (aMCI) appear to center on memory tasks that require relational memory (RM), the ability to link or integrate unrelated pieces of information. RM impairments in aMCI likely reflect neural changes in the medial temporal lobe (MTL) and posterior parietal cortex (PPC). We tested the hypothesis that individuals with aMCI, as compared to cognitively normal (CN) controls, would recruit neural regions outside of the MTL and PPC to support relational memory. To this end, we directly compared the neural underpinnings of successful relational retrieval in aMCI and CN groups, using event-related functional magnetic resonance imaging (fMRI), holding constant the stimuli and encoding task. The fMRI data showed that the CN, compared to the aMCI, group activated left precuneus, left angular gyrus, right posterior cingulate, and right parahippocampal cortex during relational retrieval, while the aMCI group, relative to the CN group, activated superior temporal gyrus and supramarginal gyrus for this comparison. Such findings indicate an early shift in the functional neural architecture of relational retrieval in aMCI, and may prove useful in future studies aimed at capitalizing on functionally intact neural regions as targets for treatment and slowing of the disease course

    High-resolution, large-scale laboratory measurements of a sandy beach and dynamic cobble berm revetment

    Get PDF
    High quality laboratory measurements of nearshore waves and morphology change at, or near prototype-scale are essential to support new understanding of coastal processes and enable the development and validation of predictive models. The DynaRev experiment was completed at the GWK large wave flume over 8 weeks during 2017 to investigate the response of a sandy beach to water level rise and varying wave conditions with and without a dynamic cobble berm revetment, as well as the resilience of the revetment itself. A large array of instrumentation was used throughout the experiment to capture: (1) wave transformation from intermediate water depths to the runup limit at high spatio-temporal resolution, (2) beach profile change including wave-by-wave changes in the swash zone, (3) detailed hydro and morphodynamic measurements around a developing and a translating sandbar.</p

    Event-Related Functional Magnetic Resonance Imaging Changes during Relational Retrieval in Normal Aging and Amnestic Mild Cognitive Impairment

    Get PDF
    Abstract The earliest cognitive deficits observed in amnestic mild cognitive impairment (aMCI) appear to center on memory tasks that require relational memory (RM), the ability to link or integrate unrelated pieces of information. RM impairments in aMCI likely reflect neural changes in the medial temporal lobe (MTL) and posterior parietal cortex (PPC). We tested the hypothesis that individuals with aMCI, as compared to cognitively normal (CN) controls, would recruit neural regions outside of the MTL and PPC to support relational memory. To this end, we directly compared the neural underpinnings of successful relational retrieval in aMCI and CN groups, using event-related functional magnetic resonance imaging (fMRI), holding constant the stimuli and encoding task. The fMRI data showed that the CN, compared to the aMCI, group activated left precuneus, left angular gyrus, right posterior cingulate, and right parahippocampal cortex during relational retrieval, while the aMCI group, relative to the CN group, activated superior temporal gyrus and supramarginal gyrus for this comparison. Such findings indicate an early shift in the functional neural architecture of relational retrieval in aMCI, and may prove useful in future studies aimed at capitalizing on functionally intact neural regions as targets for treatment and slowing of the disease course. (JINS, 2012, 18, 886-897

    High-resolution, large-scale laboratory measurements of a sandy beach and dynamic cobble berm revetment

    Get PDF
    AbstractHigh quality laboratory measurements of nearshore waves and morphology change at, or near prototype-scale are essential to support new understanding of coastal processes and enable the development and validation of predictive models. The DynaRev experiment was completed at the GWK large wave flume over 8 weeks during 2017 to investigate the response of a sandy beach to water level rise and varying wave conditions with and without a dynamic cobble berm revetment, as well as the resilience of the revetment itself. A large array of instrumentation was used throughout the experiment to capture: (1) wave transformation from intermediate water depths to the runup limit at high spatio-temporal resolution, (2) beach profile change including wave-by-wave changes in the swash zone, (3) detailed hydro and morphodynamic measurements around a developing and a translating sandbar.</jats:p
    • …
    corecore