13 research outputs found

    Steady Rotation of Micropolar Fluid Sphere in Concentric Spherical Container

    Get PDF
    AbstractThe problem of slow steady rotation of a micropolar fluid sphere in concentric spherical container filled with viscous fluid is studied. The appropriate boundary conditions are taken on the surface of the sphere. The hydrodynamic couple and wall correction factor exerted on the micropolar fluid sphere is obtained. The dependence of the wall correction factor on the micropolarity parameter and spin parameter is presented graphically and discussed. The hydrodynamic couple acting on a solid sphere in a cell model and on a solid sphere in an unbounded medium are obtained from the present analysis

    高い変形能を示すチタン繊維編物内部への骨成長

    Get PDF
    Objectives: The objective of this study is to develop a Ti fibre knit block without sintering, and to evaluate its deformability and new bone formation in vivo. Material and Methods: A Ti fibre with a diameter of 150 μm was knitted to fabricate a Ti mesh tube. The mesh tube was compressed in a metal mould to fabricate porous Ti fibre knit blocks with three different porosities of 88%, 69%, and 50%. The elastic modulus and deformability were evaluated using a compression test. The knit block was implanted into bone defects of a rabbit’s hind limb, and new bone formation was evaluated using micro computed tomography (micro-CT) analysis and histological analysis. Results: The knit blocks with 88% porosity showed excellent deformability, indicating potential appropriateness for bone defect filling. Although the porosities of the knit block were different, they indicated similar elastic modulus smaller than 1 GPa. The elastic modulus after deformation increased linearly as the applied compression stress increased. The micro-CT analysis indicated that in the block with 50% porosity new bone filled nearly all of the pore volume four weeks after implantation. In contrast, in the block with 88% porosity, new bone filled less than half of the pore volume even 12 weeks after implantation. The histological analysis also indicated new bone formation in the block. Conclusions: The titanium fibre knit block with high porosity is potentially appropriate for bone defect filling, indicating good bone ingrowth after porosity reduction with applied compression
    corecore