110 research outputs found

    Synchronization and Coarsening (without SOC) in a Forest-Fire Model

    Full text link
    We study the long-time dynamics of a forest-fire model with deterministic tree growth and instantaneous burning of entire forests by stochastic lightning strikes. Asymptotically the system organizes into a coarsening self-similar mosaic of synchronized patches within which trees regrow and burn simultaneously. We show that the average patch length grows linearly with time as t-->oo. The number density of patches of length L, N(L,t), scales as ^{-2}M(L/), and within a mean-field rate equation description we find that this scaling function decays as e^{-1/x} for x-->0, and as e^{-x} for x-->oo. In one dimension, we develop an event-driven cluster algorithm to study the asymptotic behavior of large systems. Our numerical results are consistent with mean-field predictions for patch coarsening.Comment: 5 pages, 4 figures, 2-column revtex format. To be submitted to PR

    Intrinsic quadrupole moment of the nucleon

    Get PDF
    We address the question of the intrinsic quadrupole moment Q_0 of the nucleon in various models. All models give a positive intrinsic quadrupole moment for the proton. This corresponds to a prolate deformation. We also calculate the intrinsic quadrupole moment of the Delta(1232). All our models lead to a negative intrinsic quadrupole moment of the Delta corresponding to an oblate deformation.Comment: 17 pages, 5 figure

    Implementations of a model of physical sorting

    Get PDF
    We define a computational model of physical devices that have a parallel atomic operation that transforms their input, an unordered list, in such a way that their output, the sorted list, can be sequentially read off in linear time. We show that several commonly-used scientific laboratory techniques (from biology, chemistry, and physics) are instances of the model and we provide experimental implementations

    Implementations of a model of physical sorting

    Get PDF
    We define a computational model of physical devices that have a parallel atomic operation that transforms their input, an unordered list, in such a way that their output, the sorted list, can be sequentially read off in linear time. We show that several commonly-used scientific laboratory techniques (from biology, chemistry, and physics) are instances of the model and we provide experimental implementations

    Surface Magnetization of Aperiodic Ising Quantum Chains

    Full text link
    We study the surface magnetization of aperiodic Ising quantum chains. Using fermion techniques, exact results are obtained in the critical region for quasiperiodic sequences generated through an irrational number as well as for the automatic binary Thue-Morse sequence and its generalizations modulo p. The surface magnetization exponent keeps its Ising value, beta_s=1/2, for all the sequences studied. The critical amplitude of the surface magnetization depends on the strength of the modulation and also on the starting point of the chain along the aperiodic sequence.Comment: 11 pages, 6 eps-figures, Plain TeX, eps

    Stripes and holes in a two-dimensional model of spinless fermions and hardcore bosons

    Full text link
    We consider a Hubbard-like model of strongly-interacting spinless fermions and hardcore bosons on a square lattice, such that nearest neighbor occupation is forbidden. Stripes (lines of holes across the lattice forming antiphase walls between ordered domains) are a favorable way to dope this system below half-filling. The problem of a single stripe can be mapped to a spin-1/2 chain, which allows understanding of its elementary excitations and calculation of the stripe's effective mass for transverse vibrations. Using Lanczos exact diagonalization, we investigate the excitation gap and dispersion of a hole on a stripe, and the interaction of two holes. We also study the interaction of two, three, and four stripes, finding that they repel, and the interaction energy decays with stripe separation as if they are hardcore particles moving in one (transverse) direction. To determine the stability of an array of stripes against phase separation into particle-rich phase and hole-rich liquid, we evaluate the liquid's equation of state, finding the stripe-array is not stable for bosons but is possibly stable for fermions.Comment: 24 pages, 18 figure

    SENP3 promotes an Mff-primed Bcl-xL-Drp1 interaction involved in cell death following ischemia

    Get PDF
    Dysregulation of the mitochondrial fission machinery has been linked to cell death following ischemia. Fission is largely dependent on recruitment of Dynamin-related protein 1 (Drp1) to the receptor Mitochondrial fission factor (Mff) located on the mitochondrial outer membrane (MOM). Drp1 is a target for SUMOylation and its deSUMOylation, mediated by the SUMO protease SENP3, enhances the Drp1-Mff interaction to promote cell death in an oxygen/glucose deprivation (OGD) model of ischemia. Another interacting partner for Drp1 is the Bcl-2 family member Bcl-xL, an important protein in cell death and survival pathways. Here we demonstrate that preventing Drp1 SUMOylation by mutating its SUMO target lysines enhances the Drp1-Bcl-xL interaction in vivo and in vitro. Moreover, SENP3-mediated deSUMOylation of Drp1 promotes the Drp1-Bcl-xL interaction. Our data suggest that Mff primes Drp1 binding to Bcl-xL at the mitochondria and that Mff and Bcl-xL can interact directly, independent of Drp1, through their transmembrane domains. Importantly, SENP3 loss in cells subjected to OGD correlates with reduced Drp1-Bcl-xL interaction, whilst recovery of SENP3 levels in cells subjected to reoxygenation following OGD correlates with increased Drp1-Bcl-xL interaction. Expressing a Bcl-xL mutant with defective Drp1 binding reduces OGD plus reoxygenation-evoked cell death. Taken together, our results indicate that SENP3-mediated deSUMOlyation promotes an Mff-primed Drp1-Bcl-xL interaction that contributes to cell death following ischemia
    • …
    corecore