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Abstract. We define a computational model of physical devices that
have a parallel atomic operation that transforms their input, an un-
ordered list, in such a way that their output, the sorted list, can be se-
quentially read off in linear time. We show that several commonly-used
scientific laboratory techniques (from biology, chemistry, and physics) are
instances of the model and we provide experimental implementations.

1 Introduction

There has been interest in identifying, analysing, and utilising computations
performed in nature [1, 7, 8, 10, 11, 16, 19, 21, 23, 26, 28], in particular where they
appear to offer interesting resource trade-offs when compared with the best-
known sequential (e.g. Turing machine) equivalent. In this paper we present a
special-purpose model of computation that falls into that category. Other natural
sorting algorithms have been proposed in the literature [2, 3, 24].

Natural scientists routinely separate millions of particles based on their phys-
ical characteristics. For example, biologists separate different lengths of DNA
using gel electrophoresis [25], chemists separate chemicals by using chromatog-
raphy [22], and physicists separate particles based on their mass-to-charge ratio
using mass spectrometry [15]. The common idea behind these techniques is that
some physical force affects objects to an amount that is proportional to some
physical property of the objects. We use this idea to sort objects and provide a
special-purpose model of computation that describes the method idea formally.
In this paper we present five instances of the model that are routinely used for
ordering physical objects but, to our knowledge, all but one have never before
been proposed for sorting lists of numbers. We also provide four physical imple-
mentations utilised frequently by scientists in the fields of chemistry, biology, and
physics. In these fields, particles of diameter 10−6 meters and below are sorted.
This suggests that the model can be used for massively parallel computations.
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The special-purpose model works as follows. We encode the list of numbers
(input vector) in terms of one physical property of a chosen class of particle,
such that an easily realisable known physical force will affect proportionally
each particle based on its value for that property. The one-dimensional (1D)
input vector is transformed to a two-dimensional (2D) matrix via a constant-
time atomic operation which represents the action of the force. This 2D matrix
representation admits a simple linear time algorithm that produces a (stable)
sort of the original 1D input list.

In Section 2 we introduce the Model of Physical Sorting (which we simply
refer to as the Model). We define the (general) Model in Section 2.1 and the
Restricted Model in Section 2.2. One of the interesting aspects of the Model is
that several implementations of it already exist; in Section 3 we describe five
instances and present experimental results for four that are used as real-world
sorting methods. Some of these instances are not instances of the Model but of
the Restricted Model. In Section 3.4 we show how a pre-existing instance of the
Restricted Model is generalised to become an instance of this Model. Section 4
concludes the paper.

2 Model of Physical Sorting

In this section we introduce the Model of Physical Sorting and the Restricted
Model of Physical Sorting. Their instances take as input a list L = (l1, l2, . . . , ln)
and compute the stable sorting [17] of the list.

Definition 1 (Stable sort). A sort is stable if and only if sorted elements with

the same value retain their original order. More precisely, a stable sorting is a

permutation (p(1), p(2), . . . , p(n)) of the indices {1, 2, . . . , n} that puts the list

elements in non-decreasing order, such that lp(1) 6 lp(2) 6 · · · 6 lp(n) and that

p(i) < p(j) whenever lp(i) = lp(j) and i < j.

Not all sorting algorithms are stable; we give some counterexamples. Clearly any
sorting algorithm that does not preserve the original relative ordering of equal
values in the input is not stable. A sorting algorithm that relies on each element
of its inputs being distinct to ensure stability is not stable. A sorting algorithm
that outputs only an ordered list of the input elements (rather than indices) is
not necessarily stable.

2.1 The Model

Let N = {1, 2, 3, . . .}. Before formally describing the computation of the Model
we give an informal description. The input list is transformed to a 2D matrix
that has a number of rows equal to the input list length and a number of columns
linear in the maximum allowable input value. The matrix is zero everywhere ex-
cept where it is populated by the elements of the input list, whose row position in
the matrix is their index in the input and whose column position is proportional
to their value. The values in the matrix are then read sequentially, column by



column, and the row index of each nonzero value is appended to an output list.
This output list of indices is a stable sorting of the input list.

Definition 2 (Model of Physical Sorting). A Model of Physical Sorting is

a triple S = (m,a, b) ∈ N × N × N, where m is an upper bound on the values to

be sorted and a, b are scaling constants.

The Model acts on a list L = (l1, l2, . . . , ln) where li ∈ {1, . . . ,m} and m
is some constant that is independent of n. Given such a list L and a Model of
Physical Sorting S we define a n × (am + b) matrix G with elements

Gi,j =

{

li if j = ali + b

0 otherwise
(1)

An example G for given S and L is shown in Figure 1.
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Fig. 1. Graphical illustration of the matrix G for example model S = (m, a, b) =
(3, 2, 1) and for example input list L = (1, 3, 2, 1, 1, 3).

Definition 3 (Physical Sorting computation). A Physical Sorting compu-

tation is a function c : {1, . . . ,m}n → {1, . . . , n}n that maps a list L of values

to a sorted list of indices

c(l1, l2, . . . , ln) = (k1, k2, . . . , kn) (2)

where lkp
is the pth non-zero element of G and the elements of G are assumed

to be ordered first by column and then by row.

Remark 1. A Physical Sorting computation returns a stable sorting of its input:
k1 is the index of the first value in the stable sorting of L, k2 is the index of the
second value, and so on.



Remark 2. We assume that a Physical Sorting computation is computed in at
most (am + b)n + 1 = O(n) timesteps. The creation of matrix G takes one
timestep and obtaining the indices of the nonzero values in G takes one timestep
per element of G.

Each of the physical instances of our Model of Physical Sorting that follow are
consistent with Remarks 1 and 2; the matrix G is generated in a single parallel
timestep and the Physical Sorting computation takes linear time to output a
stable sorting.

An interesting feature of the algorithm is the fact that it has a parallel part
followed a sequential part. One could ask that the entire algorithm be either
entirely sequential or entirely parallel, with a respective increase or decrease in
time complexity. However, neither of these scenarios correspond to the way in
which physical instances (see Section 3) are actually performed in the laboratory.

2.2 Restricted Model

It is possible to restrict some physical instances of the Model in Section 3 to be-
come instances of the Restricted Model. This restriction is achieved by removing
the abilities to track indices and deal with repeated elements.

Definition 4 (Restricted Model of Physical Sorting). A Restricted Model

of Physical Sorting is a triple S = (m,a, b) ∈ N × N × N, where m is an upper

bound on the values to be sorted and a, b are scaling constants.

The Restricted Model acts on a multiset T = {t1, t2, . . . , tn}, ti ∈ N and
m is some constant that is independent of n. Given such a multiset T and a
Restricted Model of Physical Sorting S we define the vector V of length am+ b.
As before a, b are scaling constants and m = max(T ). The vector V has elements

Vj =

{

ti if j = ati + b

0 otherwise
(3)

Definition 5 (Restricted Physical Sorting computation). A Restricted

Physical Sorting computation is a function c that maps a set T = {t1, t2, . . . , tn}, ti ∈
N to a list

c(T ) = (tk1
, tk2

, . . . , tkn
) (4)

where tkp
is the pth non-zero element of V .

It is not difficult to see that c(T ) is a list of strictly increasing values, that is
tki

< tki+1
for all i ∈ {1, 2, . . . , n − 1}.

The Restricted Model computes a non-stable sorting of the input multiset.

Remark 3. The input to a Restricted Model of Physical Sorting is a multiset,
however the output vector does not contain any duplicated elements. Also the
output of a Restricted Physical Sorting computation is a sorted list of the input
elements, no index information is available and so is not necessarily a stable sort.



Remark 4. We assume that a Restricted Physical Sorting computation is com-
puted in at most (am + b) + 1 = O(1) timesteps. The creation of vector V takes
one timestep and obtaining the sorted list in V takes one timestep per element
of V .

3 Physical Instances of the Model

In this section we give five example instances of either the Model, the Restricted
Model that arise in commonly-used scientific laboratory techniques, gel elec-
trophoresis, chromatography, the dispersion of light, optical tweezers, and mass
spectrometry. A brief introduction is given to each instance and we explain how
it is used to sort. Most of the examples are instances of both the Model and
the Restricted Model and we show how the examples compute in a way that is
consistent with the models. In all but one case (optical tweezers) we present an
experimental implementation of the physical instance.

With Gel Sort and Rainbow Sort the matrix produced is the mirror image
of the other examples; larger input elements have a smaller column index in the
matrix while smaller input elements have a large column index. Reading the
matrix of sorted values in the normal way yields an output list of non-increasing
order. To get an output list of non-decreasing order we read the matrix starting
with the largest column index.

3.1 Gel Sort

Gel electrophoresis [25] is a fundamental tool of molecular biologists and is a
standard technique for separating large molecules (such as DNA and RNA) by
length. It utilises the differential movement of molecules of different sizes in a
gel of a given density.

Description. The process of gel electrophoresis is illustrated in Figure 2 and
occurs as follows. Samples of DNA molecules are placed into wells at one end
of a rectangle of agarose gel. The wells are separated from each other at dif-
ferent spatial locations along a straight line. The gel is then permeated with a
conducting liquid. Electrodes apply a voltage across the gel which provides a
force upon the charged molecules causing them to be pulled towards the oppo-
sitely charged electrode. Smaller molecules move through the gel more quickly
and easily than larger molecules. This difference in velocity orders the molecular
samples by number of base pairs.

Sorting. Here we briefly describe Gel Sort; using gel electrophoresis for sorting.
Given a list L of numbers to be sorted, we encode each element of L as a sample
of molecules with a number of base pairs proportional to the element value. Each
sample of uniform length molecules is placed (in the same order as in L) in the
wells at one end of the gel. A voltage is applied for a time and the molecules move



through the gel at a rate inversely proportional to their length. When the voltage
is removed the gel is a representation of the matrix G (see Definition 2). We then
read off the list of sorted indices by recording the index of each element in order
of those which traveled the least and in order of their index. The resulting list
is in decreasing order. Restricted Gel Sort is similar to Gel Sort except that all
the samples of molecules are placed in the same well.

Instance. Viney and Fenton [27] provide an equation that describes the physics
of gel electrophoresis,

V = K1
E

εMn
− K2E , (5)

where V is the velocity of a molecule of molecular mass M in an electric field E,
where the ratio between the pore size and the typical size of the molecules is
given by 0 < n 6 1, and where ε is the permittivity of the conducting liquid.
The constants K1 and K2 represent quantities such as the length of the gel, and
the charge per unit length of the molecule [27].

To get distance s we apply V = s/t where t is time, giving

s = K1
Et

εMn
− K2Et .

We refer to sorting using gel electrophoresis as Gel Sort. For an instance of
Gel Sort we choose appropriate values for K1,K2, E, t, ε ∈ R such that k1 =
(K1Et/ε) ∈ N and k2 = (K2Et) ∈ N. We also let n = 1 which gives

s = k1M
−1 − k2 . (6)

Equation (6) satisfies Equation (1) if we let S = (m, k1, k2) where m ∈ N is the
smallest length of DNA or RNA to be sorted.

Given a list L to be sorted, we encode each list value as a sample of molecules
of proportional length. Each sample of molecules is then placed in an individual
well, in the same order of the list to be sorted L. After the gel is run, it is
a representation of the matrix G. To read the list of indices corresponding to
a stable sort, we sequentially record the indices of the samples beginning with
those that traveled least. Thus Gel Sort implements arbitrary computations of
the Model.

Given a multiset T to be sorted, we encode each multiset value as a sample
of molecules of proportional length. If we place all molecules in one well, after
the gel is run it is a representation of the vector V . We read the sorted list by
recording the length of each sample beginning with those that traveled least.
Thus Restricted Gel Sort is an instance of the Restricted Model of Physical
Sorting.

Implementation We have implemented an instance of Gel Sort and Restricted
Gel Sort. The elements of the unordered list of numbers to sort L = (550, 162,
650, 200,550, 350, 323, 550) are encoded as DNA strings with a number of base



pairs proportional to their value. These values of DNA are placed in individual
wells in a 1% agarose gel in the order that they appeared in the list L. We
also place a sample of each in a single well to produce a non-stable sort for
comparison. The gel is run for some time and the result is seen in columns 1− 8
in Figure 2. We then read off the list of sorted indices by recording the index of
each element in order beginning with those which traveled the least and in order
of their index. This yields the list of indices c(L) =(2,4,7,6,1,5,8,3) which yields
the sorted list of elements (162, 200, 323, 350, 550, 550, 550, 650).

A 1 2 3 4 5 6 7 8

Fig. 2. Electrophoresis of DNA molecules in a 1% agarose gel. Lane A is a non-stable
sort which contains strings of DNA with the same number of base pairs as all of those
in lanes 1 to 8. In lanes 1 to 8 the DNA molecule lengths are respectively 550, 162,
650, 200, 550, 350, 323 and 550 base pairs.

We have also performed a Restricted Gel Sort that is an instance of the Re-
stricted Model of Physical Sorting (see Definition 5). We sort the set of numbers
T = (550, 162, 650, 200, 550, 350, 323, 550) but this time they are all placed in a
single well in the agarose gel. The result which is seen in column A of Figure 2
is c(T ) = (162, 200, 323, 350, 550, 650). This is a non-stable sorting of the list L
as the multiple instances of the element 550 were lost in the result.

3.2 Optomechanical Sort

The movement of small transparent particles by light alone is an effect most
commonly employed in optical tweezers [5] for biologists to manipulate micro-
scale objects. Several methods of ordering particles using this technology have
been proposed [9, 14]. We, however, propose a novel method that is an instance
of the model of Physical Sorting. We do not provide a implementation of Opto-
mechanical Sort or an instance of the Restricted Model.

Description It is known that transparent objects experience a force when a
beam of light passes through them [4]. This force is caused by the beam’s path
being refracted by the object. A change in light beam direction causes a change
in the beam’s momentum, and momentum is only conserved if there is an equal



but opposite change of momentum for the object. This momentum change has a
component in the same direction as the direction of the beam and a component
in the direction of the increasing intensity gradient of the beam (the gradient
force, Fgrad).

Fig. 3. The initial configuration of Optomechanical Sort. The circles represent the
particles to be sorted.

Sorting. We propose the use of optical tweezers technology to sort objects
and we refer to this sort as Optomechanical Sort. In Optomechanical Sort, all
of the input objects are arranged in a straight line in a medium (e.g. water).
There is a barrier that prevents the objects from moving in the direction of the
beam. A light source, constant in time, and with a strictly increasing intensity
gradient perpendicular to the axis of the input objects is applied (see Figure 3).
This intensity gradient is achieved by modulating a uniform light field with an
intensity filter variable in one direction only. The objects with a larger volume
move more quickly in the direction of increasing intensity than those of a smaller
volume. This movement separates the objects according to their volumes.

Instance We proceed by using the equations for objects smaller than the wave-
length of the light beam. According to Ashkin [6] the equation to calculate the
force in the direction of the gradient on the particles is

Fgrad = −n3
bV

2

(

m2 − 1

m2 − 2

)

∇E2

where nb is the refractive index of the medium, m is the refractive index of the
particles divided by the index of the medium, V is the volume of the particles
and ∇E2 is the change in beam density over the particle.

For each instance of Optomechanical Sort we let nb,m,∇E2 be constants
such that

Fgrad = k1V (7)



where k1 ∈ N, holds. Equation (7) satisfies Equation (1) with S = (m, k1, 0)
where m is the maximum particle volume for the specific material and medium.
The sort is stable as we obtain a list of indices by reading the index of each
particle in the order of least distance traveled and since the particles move in
parallel lines. Thus Optomechanical Sort is an instance of the Model.

3.3 Chromatography Sort

Chromatography is a collection of many different procedures in analytical chem-
istry [20] which behave similarly (e.g. gas chromatography, liquid chromatog-
raphy, ion exchange chromatography, affinity chromatography, thin layer chro-
matography). It is commonly used to separate the components in a mixture.

Description. Chromatography separates the input chemicals (analytes) over
time in two media; the mobile phase and the stationary phase. The mobile
phase is a solvent for the analytes and filters through the stationary phase. The
stationary phase resists the movement of the analytes to different degrees based
on their chemical properties. This causes the analytes to separate over time.

Sorting. We refer to the use of chromatography to sort substances by their aver-
age velocity through the stationary phase as Chromatography Sort. We proceed
assuming known relative velocities for analytes in our apparatus. The apparatus
is either wide enough to accommodate many analytes side by side or is made of
several identical setups which allow side by side comparisons.

Given a list L of numbers to be sorted, we encode each element of L as a
sample of analyte with a relative velocity proportional to the element value. Each
analyte is placed in the chromatography apparatus in the same order as in L.
When the process commences the analytes move along the stationary medium
at a rate proportional to its relative velocity. When the process is halted the
apparatus is a representation of the matrix G (from Equation (1)). We then
read off the list of sorted indices by recording the index of each element in order
of those which traveled the most and in order of their index (position in L).

Restricted Chromatography Sort is similar to Chromatography Sort except
that all analytes are mixed together and placed in the apparatus as one sample.

Instance. We use standard equations from analytical chemistry [22] to calculate
the distance traveled by an analyte in a particular mobile phase and stationary
phase.

Given the time tm for the mobile phase to travel distance Lm, the average
velocity ūm of the mobile phase in the stationary phase and the capacity factor
k of the analyte, Poole and Schuette [22] provide

tR =
Lm

ūm

(1 + k)



to find the time tR that it takes the analyte to travel the distance Lm. They also
provide

k =
tR − tm

tm

to find the value of k. By substitution we find

Lm = ūmtm .

It follows that an analyte moving at an average velocity of ūa 6 ūm will in time
tm travel a proportional distance La 6 Lm, that is

La = ūatm . (8)

We refer to the use of chromatography to sort substances by their average ve-
locity ūa through the stationary phase as Chromatography Sort. If we provide
an instance of the Model with the triple S = (m, tm, 0) where m = ūm is the
average velocity of the mobile phase in the stationary phase, it is clear that
Equation (8) satisfies Equation (1).

Also, we ensure that Chromatography Sort is stable by running each analyte
to be sorted side by side, or on a separate but identical, apparatus. After the
run, the apparatus is a representation of the matrix G. The final indices are
recorded in order of analytes that traveled the least distance and in the case of
analytes traveling the same distance, in the order of the indices starting with
the smallest. Thus Chromatography Sort is an instance of the model.

In an instance of Restricted Chromatography Sort all analytes are mixed
together and placed in the apparatus as one sample. After the run the apparatus
is a representation of the vector V . The sorted list is read by recording the order
of the analytes staring with those that traveled the least distance. Restricted
Chromatography Sort is an instance of the Restricted Model.

Implementation. We have performed an implementation of Chromatography
Sort with a list of numbers L = (3, 1, 2, 3, 2, 1). The chemicals involved were
domestic food dyes and their average velocities were measured with a water
mobile phase and thin layer stationary phase. We assigned each element in L a
chemical directly proportional to its average velocity with a water mobile phase
and thin layer stationary phase. In this case the assignment was 1 to blue, 2 to
red, and 3 to yellow.

The result is seen in Figure 4. The final indices are read off in order of
least distance traveled by the analytes giving the list c(L) = (2,6,3,5,1,4). These
indices yield the stable sorting of L with duplicates in the same order that they
appeared in the input. We also performed an instance of the Restricted Model,
the output of which is seen in Figure 4 column A. The input set was T = (3, 1, 2,
3, 2, 1) and the numbers were encoded using the same scheme. The sorted output
is c(T ) = (0.00001ms−1, 0.00002ms−1, 0.00003ms−1) which does not record the
multiple instances of set elements. The result is a non-stable sorting of the set T .
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Fig. 4. Chromatography of household food dye in water on a thin layer plate. Lane A
is a non-stable sort which contains each of the dyes in lanes 1 to 6. In lanes 1 to 6
the average speeds are, from left to right 0.00003ms−1, 0.00001ms−1, 0.00002ms−1,
0.00003ms−1, 0.00002ms−1, 0.00001ms−1.

3.4 Rainbow Sort

Rainbow Sort was first described by Schultes [24] as an unstable sort but by a
simple generalisation it becomes an instance of the Model.

Description. Rainbow Sort utilises the phenomenon of dispersion, where light
beams of longer wavelengths are refracted to a lesser degree than beams of a
shorter wavelength. Dispersion occurs where there is a change of refractive index
in the media (such as an interface between air and glass) in the path that the
light beam travels.

Sorting. In Rainbow Sort, as described by Schultes [24] each element of a list
L is encoded as a distinct wavelength proportional to its value. A beam of light
containing only the wavelengths to be sorted is passed through a prism. The
component wavelengths are refracted at different angles and so emerge from
the prism as separate beams and in an order dictated by their wavelength (see
Figure 5). A light measurement device is positioned to sequentially read the
ordered component beams. Schultes considers the input encoding (which takes
linear time) in his complexity analysis which differs from our constant time
analysis. This is an unstable sort as it does not output repeated elements that
were in the input and as defined does not return a list of indices and so is not
necessarily stable.

Schultes provides a possible technique to sort lists with repeated elements
with Rainbow Sort [24]. We suggest our own method that follows from the Model



of Physical Sorting called Generalised Rainbow Sort, which is similar to Rainbow
Sort except that it utilises the full geometry of the prism and is an instance of the
Model. It also returns the indices of the sorted list elements, thus guaranteeing
stability. Each element of the list L is encoded as a beam of light of a distinct
wavelength proportional to its value. Each beam is then passed through the
prism at a different depth in the prism, as shown in Figure 5. We then read
off the list of sorted indices by recording the index of each refracted beam in
order of those which where refracted the most and were there are multiple beams
refracted to the same degree, in order of their index.

(A)

(B)

δ

s

s

Fig. 5. Rainbow Sort and Generalised Rainbow Sort. (A) The computation of Rainbow
Sort and also a side elevation of Generalised Rainbow Sort. Here s represents a sensor.
The angle δ is the angle of deviation. (B) Top down view of Generalised Rainbow Sort.

Instance. There is a relationship between the angle of deviation δ (the angle
between the input beam and the output beam) and the refractive index of the
prism medium for each wavelength of light [24]. We limit the set of available
input beam wavelengths so that the distance from where the uninterrupted beam
would have reached the sensor to where the diffracted beam reaches it is linear in
both tan δ and the distance between the sensor and the prism. This is expressed
as

s = p tan δ (9)

where s is the distance along the sensor (see Figure 5) and p is the distance
between the sensor and the prism surface. Equation (9) satisfies Equation (3)
if we let the Restricted Model triple be S = (m, p, 0) where m is the minimum
wavelength whose refracted path can be measured by the implementation and p
is as in Equation (9). Rainbow Sort cannot is not stable as it returns a sorted list
of wavelengths and does not output indices. Thus Rainbow Sort is an instance
of the Restricted Model.



Generalised Rainbow Sort sorts the input in a manner that is similar to Rain-
bow Sort but instead returns a list of indices, and naturally deals with repeated
elements in the input. The resulting Generalised Rainbow Sort is a stable sort.
Using Equation (9) and the Model triple S = (m, p, 0) from Section 3.4 we see
that Generalised Rainbow Sort is an instance of the Model.

Implementation. Here we show an implementation of Generalised Rainbow
Sort. A list of numbers to be sorted L = (635, 592, 513, 426, 513, 592, 426, 635,
426, 513, 592) was encoded as beams of light of a proportional wavelength. The
beams were arranged in order, parallel to the axis face of a prism (see Figure 6).
The prism refracted the longer wavelengths to a lesser degree and so ordered
them according to wavelength as shown in Figure 7.

Reading off the beams in order of the most refracted and in the order of the
list L yields the list of indices c(L) = (4, 7, 9, 3, 5, 10, 2, 11, 1, 6, 8). This
resulting list of numbers is a stable sorting of the list L.

Light source Lens A Lens B
Prism

Image

Fig. 6. The apparatus used to implement Generalised Rainbow Sort. Light emitting
diodes were used as the light source. Lenses were used to focus the light beams onto
the prism.

3.5 Mass Spectrometry Sort

Mass spectrometry [15] is a technique used for separating ions by their mass-to-
charge ratio and is most commonly used to identify unknown compounds and to
clarify the structure and chemical properties of molecules. Of the several types
of mass spectrometry we describe here the “time of flight” method.

Description. The process of time of flight mass spectrometric analysis is as
follows. The gaseous sample particles are ionised by a short pulse of electrons and
accelerated to a speed that is inversely proportional to their mass and directly
proportional to their charge by a series of high voltage electric fields towards a
long field-free vacuum tube known as the field-free drift region.
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Fig. 7. (A) Beams that have been refracted proportional to their wavelength. Beams
that are lower down than others have a lesser wavelength than those higher up. (B)
Unrefracted light and the status of the beams before they were refracted by the prism.
There is some distortion in the image introduced by the lenses. The coloured points
are labeled G for green, O for orange, B for blue, and R for red.

Here each ion moves at its entry velocity as they travel along the vacuum tube
in a constant high voltage. At the opposite end of the tube there is a detector
to record the arrival of the ions. In reflection time-of-flight mass spectrometers
there is a “mirror” electric field which reflects the ions back along the length of
the tube to the detector. This compensates for the initial energy spread of the
ions and provides increased mass resolution. Since the different ions all travel
the same distance but with characteristic velocities they arrive at the detector
at different times. Using the time of arrival (time of flight) we identify the ions.

Sorting. We refer to the use of mass spectrometry for sorting as Mass Spec-
trometry Sort. Given a list L of numbers to be sorted, we encode each element
of L as a sample of molecules with a time of flight proportional to the element
value. The samples of molecules are fired simultaneously by a mass spectrometer.
The time of flight of each element is then recorded as it arrives at the sensor.
This is the sorted list. Since we cannot record or distinguish multiple instances
in the input Mass Spectrometry Sort is an unstable sort.

Our usual technique for introducing stability is to run identical instances that
sort each element in parallel. However due to the cost of a mass spectrometer
this is unfeasible.

Instance. Gross [15] provides a simplified equation to describe the time of flight
t of an ion based on its mass-to-charge ratio mi/z is as follows

t =
s√
2eU

√

mi

z
+ t0 (10)

Where s is the distance traveled in the field-free region, U is the voltage of
the field-free drift region, e is the charge of an electron and t0 is a time offset.



Equation (10) satisfies Equation (1) if we let S = (m, s
√

2eU
, t0) where m is the

minimum time of flight that our apparatus measures. Our usual technique of
running several apparatuses in parallel to achieve stability in the sorting is not
practical due to expense. So in the way we have described it, Mass Spectrometry
Sort is an instance of the Restricted Model of Physical sorting that is given in
Definition 5.

Implementation. As an example of Mass Spectrometry Sort we use the data
from an existing mass spectrum [12] and interpret it as an instance of Mass
Spectrometry Sort. If we are presented with an unordered list of integers T =
(19, 24, 9, 13, 19, 9, 14, 13) and we know the root mass-to-charge ratio for enough
ions we map the values of each element of T to a root mean charge ratio. In this
case we map the ion CH+

3 to 9, CHO+ to 13, CH3O
+ to 14, CH3OH+ to 14,

(CH3OH)+2 to 19 and (CH3OH)+3 to 24. The compounds necessary to create these
ions are then placed in the spectrometric apparatus and ionised. The order that
the compounds arrive at the detector is the sorted list and is shown in Figure 8.

Io
n

Y
ie

ld

0

100

200

Time of Flight (µS)
10 20 30 40 50

CH+

3

CHO+

CH3O
+

CH3OH+

(CH3OH)+2

(CH3OH)+3

Fig. 8. A mass spectrum [12] representing the sorting of a list. Unlabeled peaks are
not involved in the sort.

The time of arrival of each ion indicates the ion’s identity and by reading
the spectrograph the ordered list is found. In this case the sorted list is c(T ) =
(19, 26, 27, 28, 39, 48) and since duplicates in the list have been lost it is clear
that this is a non-stable sort.

4 Conclusion

In this paper we have proposed a Model of Physical Sorting that computes a
stable sorting of its input list of natural numbers. This model has a parallel
1D to 2D (list to matrix) transformation as an atomic operation, where only
one dimension of the matrix is dependent on the input list length. Once in



matrix form it becomes a linear-time sequential task to read the list of stable
sorted indices. We also define a Restricted Model of Physical Sorting which is
an unstable sort.

We have provided five physical instances that are well-known laboratory tech-
niques from experimental science as examples of physical sorts that are instances
of the Model. We showed how the relationship between the Model and the Re-
stricted Model naturally suggests how to introduce stability into a particular
existing physics-inspired sort, that being Rainbow Sort. In four of the five in-
stances we have presented experimental implementations. Several of the imple-
mentations has the potential to sort millions or more items in constant time. We
assume however, the processes of encoding the input values and reading off the
results are linear time bottlenecks. It might be possible that these bottlenecks
be mitigated by parallelising these operations. Other candidate instances of the
model that we have not considered here are centrifugal separation and fractional
distillation [20].

There are many other sorting techniques available in the literature. All
sequential comparison-based sorts have a lower bound of Ω(n log n) compar-
isons [17] and some sequential non-comparison based sorting algorithms such as
Radix Sort [17] and Counting Sort [17] have a worst case of O(n log n) time. Con-
stant time parallel sorting is possible, however an unfeasible number of proces-
sors is required [13]. An approach from optical computing provides a constant
time sort using a combination of lenses and individual sensors with on-board
processing [18]. Other nature inspired sorting techniques such as Bead Sort [3]
and Spaghetti Sort [2] are related to our Model of Physical Sorting and also
have a linear time bound on sequentially reading the result. Several of our sug-
gested implementations have the advantage that their technologies are already
currently being used in research laboratories worldwide.

The practical advantages of our Model of Physical Sorting over traditional
sorting algorithms would certainly not be apparent until the amount of objects to
be sorted is in the billions. Even then, the implementation prospects of the Model
could be in doubt. However, there are two reasons why we think the possibility
should not be discounted completely. Firstly, several of the laboratory techniques
underlying the implementations in this paper are widely used for other scientific
purposes and significant resources are invested annually to improving the accu-
racy and reliability of the technologies. Each of these advances would benefit a
sorting apparatus implemented using the same technology. Secondly, where an
individual wishes to sort a set of particles by some property, it might be more ef-
ficient to directly use one of the technologies described in this paper rather than
individually sensing the appropriate property of each particle, transferring it to
a computer, and performing a traditional sort. The practicality of the Model of
Physical sorting would also be less in doubt if there were implementations with
a small footprint (for example 30cm2) and were easily reusable.
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