1,315 research outputs found

    Complexity Results for Modal Dependence Logic

    Get PDF
    Modal dependence logic was introduced recently by V\"a\"an\"anen. It enhances the basic modal language by an operator =(). For propositional variables p_1,...,p_n, =(p_1,...,p_(n-1);p_n) intuitively states that the value of p_n is determined by those of p_1,...,p_(n-1). Sevenster (J. Logic and Computation, 2009) showed that satisfiability for modal dependence logic is complete for nondeterministic exponential time. In this paper we consider fragments of modal dependence logic obtained by restricting the set of allowed propositional connectives. We show that satisfibility for poor man's dependence logic, the language consisting of formulas built from literals and dependence atoms using conjunction, necessity and possibility (i.e., disallowing disjunction), remains NEXPTIME-complete. If we only allow monotone formulas (without negation, but with disjunction), the complexity drops to PSPACE-completeness. We also extend V\"a\"an\"anen's language by allowing classical disjunction besides dependence disjunction and show that the satisfiability problem remains NEXPTIME-complete. If we then disallow both negation and dependence disjunction, satistiability is complete for the second level of the polynomial hierarchy. In this way we completely classify the computational complexity of the satisfiability problem for all restrictions of propositional and dependence operators considered by V\"a\"an\"anen and Sevenster.Comment: 22 pages, full version of CSL 2010 pape

    Changing a semantics: opportunism or courage?

    Full text link
    The generalized models for higher-order logics introduced by Leon Henkin, and their multiple offspring over the years, have become a standard tool in many areas of logic. Even so, discussion has persisted about their technical status, and perhaps even their conceptual legitimacy. This paper gives a systematic view of generalized model techniques, discusses what they mean in mathematical and philosophical terms, and presents a few technical themes and results about their role in algebraic representation, calibrating provability, lowering complexity, understanding fixed-point logics, and achieving set-theoretic absoluteness. We also show how thinking about Henkin's approach to semantics of logical systems in this generality can yield new results, dispelling the impression of adhocness. This paper is dedicated to Leon Henkin, a deep logician who has changed the way we all work, while also being an always open, modest, and encouraging colleague and friend.Comment: 27 pages. To appear in: The life and work of Leon Henkin: Essays on his contributions (Studies in Universal Logic) eds: Manzano, M., Sain, I. and Alonso, E., 201

    Dependence Logic with Generalized Quantifiers: Axiomatizations

    Full text link
    We prove two completeness results, one for the extension of dependence logic by a monotone generalized quantifier Q with weak interpretation, weak in the meaning that the interpretation of Q varies with the structures. The second result considers the extension of dependence logic where Q is interpreted as "there exists uncountable many." Both of the axiomatizations are shown to be sound and complete for FO(Q) consequences.Comment: 17 page

    Approximation of holomorphic mappings on strongly pseudoconvex domains

    Full text link
    Let D be a relatively compact strongly pseudoconvex domain in a Stein manifold, and let Y be a complex manifold. We prove that the set A(D,Y), consisting of all continuous maps from the closure of D to Y which are holomorphic in D, is a complex Banach manifold. When D is the unit disc in C (or any other topologically trivial strongly pseudoconvex domain in a Stein manifold), A(D,Y) is locally modeled on the Banach space A(D,C^n)=A(D)^n with n=dim Y. Analogous results hold for maps which are holomorphic in D and of class C^r up to the boundary for any positive integer r. We also establish the Oka property for sections of continuous or smooth fiber bundles over the closure of D which are holomorphic over D and whose fiber enjoys the Convex approximation property. The main analytic technique used in the paper is a method of gluing holomorphic sprays over Cartan pairs in Stein manifolds, with control up to the boundary, which was developed in our paper "Holomorphic curves in complex manifolds" (Duke Math. J. 139 (2007), no. 2, 203--253)

    A Paraconsistent Higher Order Logic

    Full text link
    Classical logic predicts that everything (thus nothing useful at all) follows from inconsistency. A paraconsistent logic is a logic where an inconsistency does not lead to such an explosion, and since in practice consistency is difficult to achieve there are many potential applications of paraconsistent logics in knowledge-based systems, logical semantics of natural language, etc. Higher order logics have the advantages of being expressive and with several automated theorem provers available. Also the type system can be helpful. We present a concise description of a paraconsistent higher order logic with countable infinite indeterminacy, where each basic formula can get its own indeterminate truth value (or as we prefer: truth code). The meaning of the logical operators is new and rather different from traditional many-valued logics as well as from logics based on bilattices. The adequacy of the logic is examined by a case study in the domain of medicine. Thus we try to build a bridge between the HOL and MVL communities. A sequent calculus is proposed based on recent work by Muskens.Comment: Originally in the proceedings of PCL 2002, editors Hendrik Decker, Joergen Villadsen, Toshiharu Waragai (http://floc02.diku.dk/PCL/). Correcte
    corecore