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Abstract

Metaphorical use of language is often thought to be at odds with compositional,
truth-conditional approaches to semantics: after all, most metaphors are literally false. In
this paper we sketch an approach to metaphors based on standard type theory. Our
approach is classical: we do not invent a new logic. The approach models sense extension
in a simple and elegant way: the properties (supertypes) shared between tenor and vehicle
include the extensions of at least both. The original predicates remain unchanged. Our
approach captures an asymmetry between metaphor and simile: the literal interpretation
of a metaphor comes out as (mostly) false while its non-literal interpretation is that of a
corresponding reduced simile. A compositional syntax semantics interface is provided and
a deductive account of metaphor resolution is outlined. The approach readily translates
into a simple computational implementation in Prolog. We discuss how our approach
addresses issues of generalisation, feature selection, asymmetry, tension, trivialisation,

prototypicality, truth conditions, comprehension and generativeness.
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Metaphors, Logic and Type Theory

Non-literal use of language such as metaphor is usually thought to sit uneasily with

formal, truth-conditional semantics in the Montagovian tradition (Montague, 1973). Most
metaphors are simply literally false.! Consider e.g. the following established metaphor, its
formalisation in First-Order Predicate Logic (in FOPL quantification is restricted to range

over individuals) and associated truth conditions:
(1) ““John is a fox.’’ | fox(j) | [for(j)] =1 iff [j] € [foa]

The formula fox(j) can be glossed as: the one-place predicate fox (the FOPL translation
of fox) is predicated of the logical constant j (the FOPL translation of John).
Equivalently, the formula states that 5 has the property foxr. Formulas in FOPL are
interpreted in models. A model is a set theoretic construct consisting of a universe of
interpretation (a set of objects; also referred to as the domain) and an interpretation
function which specifies which constants are interpreted as which objects in the universe
and which predicates are interpreted as which subsets (of individuals or n-tuples,
depending on the number n of arguments particular predicates take) in the universe. The
interpretation of a constant or predicate symbol is also variously referred to as the
denotation or extension of the constant or the predicate symbol. A model fixes the
interpretation of basic constituent expressions (the vocabulary, if you like). Complex
expressions, i.e. formulas, are interpreted in terms of a recursively specified function
(often represented as [-]) which follows the syntactic formation rules of FOPL. The base
cases of this function are provided by the interpretation of constants and predicate
symbols given by the model.

On this account the interpretation of (1) is true if and only if the denotation [j] of

the logical constant j (the translation of John) is an element of the denotation [fox] of
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the one-place predicate foz (the translation of fox). Put differently, (1) is true if and only
if {[51} N [fon] # 0.

This, however, is not the case that obtains in the literal reading of (1) involving, as
it does, a predication of a property to an individual not in the extension of the property
predicated (to be fully explicit: here we are, of course, assuming that John is human).
Several responses are possible. For all their differences, most approaches to metaphor
assume that metaphor invites the determination of a similarity or likeness between tenor
and vehicle. One line of thought maintains that metaphor is a comparison statement
(Aristotle, 1952) that can be analysed as a reduced or elliptical simile, e.g. (Fogelin,
1988). On these accounts (1) corresponds to (2) paraphrased in (3), or, following Black’s

“system of associated commonplaces” (Black, 1962), to (4), paraphrased in (5):

(2) John is like a fox.
(3) John has some of the properties of foxes.
(4) John is like a typical fox.

(5) John has some of the typical properties of foxes.

Paraphrases (3) and (5) are readily translatable into standard type theory (Church, 1940)
and a compositional syntax-semantics interface can be set up. This will allow us to parse
natural language strings automatically into literal and metaphorical meaning
representations and this is one of the themes developed in the present paper. Standard
type theory is a higher-order logic (HOL) based on the typed A-calculus. HOL (rather
than FOPL) is required because paraphrases (3) and (5) quantify over properties . . .some
of the properties ... (i.e. sets) rather than just individuals. Versions of HOL have
been the standard choice of representation formalism in much formal semantics in the

Montagovian tradition.
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Interpretation of metaphor as corresponding reduced simile has been objected to on
a number of grounds. We discuss how our approach addresses issues of generalisation,
feature selection, asymmetry, tension, trivialisation, prototypicality, truth conditions,

comprehension and generativeness.

Type-Theory 7T

The type theory TT we employ is little more than a sugared version of the typed
A-calculus (see e.g. (Church, 1940), (Gamut, 1991b)). The basic idea in type theory is
that based on a set of primitive types (in the simplest version a type e of entities or
individuals and a type ¢ of truth values) logical connectives, predicates, arguments and
quantifiers are represented in terms of functions over those basic types. n-place relations,
e.g., can easily be coded as n + 1-place functions. The typing regime is designed to avoid
paradoxes and inconsistencies which could otherwise arise due to the considerable
expressive power of HOL. Below we briefly sketch simple extensional type theory which is
going to provide our representation formalism. The set of types T is defined as e,t € T
and if a,b € T then (a,b) € T (this is the type of functions from type a objects to type b
objects). The basic vocabulary of 7T has sets of variables Var, and constants Con,, for
each 7 € T. The syntax closes 7T under application, abstraction, the logical connectives
and quantification. Interpretation is relative to models M = (D, <) where D is a domain
of individuals and & an interpretation function interpreting constant symbols. Types are
interpreted as function spaces (domains). Interpretation domains D, for types 7 are
defined as D, := D, D; := {0,1} and D,y = DbD“. Given a model M = (D, <) with

S: Con; — D; and g : Var, — D, (for each type 7) the interpretation function [-] is

defined as follows:2

L [ea]™9 = S(ca); [2a]™9 = g(2a)

2. [0y ($a)]? = [ p "9 ([1ha] M)
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w

. [Mzaws]™9 is that function h such that for all u € Dy, h(u) = [¢,] M9/

4. [~ ]M9 = 1 iff [ ]M9 =0

ot

- [pe A )]V = 1 ifE [, ]9 =1 and [y, =1

6. [Vzap M9 = 1iff for all u € D, [, ]M9l*/4] =1
Axiomatisations of 7T are incomplete under interpretation in standard models (admitting
the full function spaces). Sound and complete axiomatisations of 77T are provided for
general models (Henkin, 1950). For readability, we will often suppress type annotations in

the formulas below.

Expressing Similes in 77T

On the most natural reading of the simile interpretation (2) of (1) the object NP is given

a generic (all / most / typical / bare plural) interpretation:

(6) John has a property which is a property of (all / most / typical)

foxes.

For expository purposes and reasons of space, below we approximate the genericity of the
object NP argument by simple universal quantification. More sophisticated (and

appropriate) treatments are possible, see for example (Carlson and Pelletier, 1995), and in
a later section we outline an interpretation based on a prototype, i.e. a cultural stereotype,

analysis. With this proviso (6) is approximated by the following 7T expression:
(7) 3AP(P j AVz(fox z — P x))

This 7T formula can be glossed as follows: there exists a property P which holds of j and
P is a property of all foxes. (7) comes out true if there exists a property P (simple or
complex) denoting a subset of the domain of entities which includes both the extension of

J and the (members of the) extension of the for predicate:

(8) [IP(P j AVx(foxr z — P x))] = 1 iff there exists a P such that [fox] U{[j]} C [P]
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Sense Extension, Supertypes, Generalisation and Feature Selection

Our analysis captures sense extension in a simple and elegant way. The extension of P is a
set that minimally includes both the extension of 7 and the elements in the extension of
fox. Notice, however, that the extension of the original fox predicate itself remains
unchanged. The property P is what extends for and additionally includes at least the
extension of j. P is a supertype of for and the minimal type that includes j. In other
words, P generalises fox and the minimal type that includes j.

If instead we had opted for a non-classical approach and extended the denotation of
the fox property itself to include that of ;7 we would be faced with the following problem:
Assume that all foxes have bushy tails. If the extension of foxr were to include that of j
we could prove that John has a bushy tail, clearly an undesirable result if, as we are
assuming in our metaphor scenario, John is decidedly a member of homo sapiens. What is
worse, if our axiomatisation of background knowledge includes a statement to the effect
that John is human as well as a statement that the categories human and fox are disjoint,
then extending the fox predicate to include j leads to inconsistency. Notice that given the
same scenario in our approach such inferences do not go through. (7) constrains the
shared property P to hold of both the (original) set of foxes and (the disjoint singleton set
of) John. Assuming that John is human, the joint property P cannot be instantiated to
that of having a bushy tail. If it was, it would falsify the conjunction in (7). Similarly,
inconsistency of the form described above cannot arise because our approach does not
extend the fox predicate.

Notice further that our analysis naturally captures a feature selection process often
attributed to metaphor, most famously perhaps in Black’s analogy (Black, 1962) between
metaphor interpretation and looking at the stars through an etched piece of smoked glass.
Whatever the property variable P is instantiated to, formula (7) minimally requires that

it generalises the fox property and the properties of John. That is, the property abstracts
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away from what is idiosyncratic to the foxr property and j to find properties that are
common to both. This is, of course, related to the point raised above and the reason why
properties which are not shared (such as having a bushy tail) are suppressed. Feature
selection theories have been refined to include graded salience mechanisms (e.g. (Ortony,
1979), (Thomas and Mareschal, 1999)). Such can be addressed by extending our aproach

to Probability Logics (e.g. (Adams, 1998)).

You cannot See what is not there ... Truth Conditions and Asymmetry

On the other hand, our analysis requires that P can only be instantiated to shared
properties that are already there. To use Max Black’s analogy once again, in this
approach the smoked glass (and its clear lines) will not allow you to see things that are
not there in the first place. You might not have been aware of them but they have been
there all along. It is important to notice that first and foremost the analysis developed in
the present paper provides a truth conditional account of metaphorical meaning analysed
as reduced simile. It does not provide an account of an agent processing a metaphor.
Logic can, of course, be used to extend it to one: intuitionistic, constructive, modal and
dynamic logics provide natural settings for modelling information growth and update (e.g.
(Jaspars, 1994), (Vogel, 2000)). For our present purposes we follow a more confined
programme: in a later section we provide a deductive account of metaphor resolution (i.e.
instantiation of P relative to an existing axiomatisation of background knowledge).

On what is not obviously but on closer inspection the same topic, it has often been
observed that metaphors are asymmetric (Ortony, 1979): lawyers are sharks is not the
same as sharks are lawyers. By contrast, our approach is symmetric: again, this is
because the account developed here provides truth conditions and not a model of the

dynamics of an agent’s knowledge states under metaphor comprehension.
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Tension, Trivialisation, Minimal Extension and Prototypicality

Tension is a characteristic quality attributed to metaphor (e.g. (Davidson, 1984)).
Tension derives from the fact that (i) most metaphors are literally false, (ii) literal
meaning is still active in non-literal interpretation and (iii) metaphors have an open-ended
quality, i.e. precisely which meaning is intended is uncertain. These aspects feature in the
analysis offered here: the literal meaning of (1) is foz(j), literal meaning components
(fox, j) feature prominently in the representation of the non-literal meaning of (1) in
formula (7) and the shared property P is existentially quantified, i.e. we know there should
be some property which is shared by tenor and vehicle but we don’t know exactly which.

Open-endedness of interpretation, one of the characteristic qualities of metaphor,
does not extend to trivial likeness. In fact, trivial likeness has been fielded against
analysing metaphor as elliptical simile (Davidson, 1984): “...everything is like everything
and in endless ways.” While I disagree with Davidson, whose objection relies on (i) the
implication that if similarity was trivial then all similarity statements would be trivial and
(ii) the false premise that similarity is trivial (the second premise is contradicted by the
fact that in most communicative situations where agents use similarity statements the
intended and communicated similarity is entirely non-trivial — in other words, similarity is
a useful concept), triviality does indeed strike at the formal level: notice that the domain
of interpretation (the set of entities) is a set which trivially includes the extension of j and
the extension of the fox predicate. From this it follows that a universal property such as
Az.z = x (the property of being identical to oneself) trivialy satisfies (7). While it is
arguable that trivialisation is the limit case of non-literal use of language, trivialisation of
this kind can be ruled out by strengthening the translation to require that P not be

instantiated to a universal property, e.g.:

(9) 3IP(P jAVz(fox © — P z) N =VyP y).
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While this move rules out the most trivial (i.e. the universal) properties and ensures
that (9) is contingent, it still admits of possibly infinitely many other shared, potentially
trivial properties such as e.g. the property of not being identical to my fridge3 (or indeed
any entity described in a background knowledge axiomatisation other than John or any of
the foxes). Notice, however, that such inferences crucially depend on a k' # k7 for i # j
(where k a metavariable over constant symbols of type e) axiom schema. The schema is
optional and requires that distinct constant symbols are interpreted as distinct entities. If
we want to rule out a possible interpretation of (1) as John is similar to foxes in
that they are all not the same as my fridge (which in some bizarre context might
in fact be the desired interpretation) we need to switch off (i.e. ignore) the constant axiom
schema (if present). Formally this corresponds to structure mapping approaches to
metaphor (Falkenheiner et.al., 1989), (Veale and Keane, 1992) not, or only selectively, or
only implicitly encoding inequality statements of the sort at stake. Everything else being
equal, the type theory based approach developed here and the structure mapping based
approaches are generative. They will produce as many interpretations as are admitted by
their background knowledge axiomatisations or (in the case of the mapping approaches)
knowledge graphs. Generative capacity can be curtailed or extended by axioms or
restrictions on proof depth (both options are in fact availed of by mapping approaches in
the form of selective knowledge graph coding and limits on recursive computations/graph
matches). In addition, in the type theory approach we can curtail generative capacity by
strengthening the translation, as in (9). As a further example, consider how a translation

can enforce a notion of minimal extension:
(10) AP(P j AVz(fox x — P z) AVQ((Q j AVz(foxr z — Q z)) = (P j — Q j))).

This translation of (1) requires that the joint property P shared between tenor and

vehicle is minimal in the sense that it implies all other shared properties Q.
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Before moving on to prototypicality, notice that in contrast to some other (feature
based) approaches (e.g. (Thomas and Mareschal, 1999)) our type theory approach does
not distinguish between simple and complex properties (in type theory complex properties
model relations and relational structure, e.g. (14)). Indeed, from the type theory
perspective such a distinction is somewhat artificial. In our approach the properties
generated are those that can be proved from whatever is axiomatised. These include
simple and complex ones. It is here (in the complex properties) that recursive
sub-metaphors can get involved in an interpretation.

In our translations so far we have assumed that the vehicle contributes a generic or
a typical property (and in fact we have glossed over the difference between the generic and
the typical and, for expository purposes approximated both in terms of universal
quantification). It has been observed (e.g. (Black, 1962)) that often what is at stake in
metaphor interpretation are cultural stereotypes taking the form of stereotypical
individuals or prototypes (rather than definitions of classes in terms of necessary and
sufficient conditions). On this account, (1) is likely to be interpreted as stating that John
is clever and this interpretation derives from comparing John to a prototype FOX. In
the words of one of the anonymous reviewers: “The metaphor compares John to an
archetype of fox, a cultural model that owes as much to Aesop as to Darwin.” This
intuition can be integrated into the type theoretic approach. What is required is an
axiomatisation of the cultural stereotype FOX. To do this with any degree of confidence
requires a psycholinguistic or cognitive theory of cultural stereotypes/prototypes which is
beyond the more confined concerns of the present paper. Give such an axiomatisation in
the form of e.g. prty for P statements where not surprisingly prty (short for prototype)
is of the type of a generalised quantifier (Barwise and Cooper, 1981) (({e,t), ({(e,t),t))
pairing a property — i.e. a class, here fo:c4 — with what are its perceived prototypical

properties P), the metaphorical meaning of (1) is captured by:
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(11) 3IP(P j A prty fox P)

This translation guarantees that the shared property derives from the
axiomatisation of the prototypical concept FOX, which is often what is encoded in the
knowledge graphs in structure mapping approaches.

In the next section we show how our analysis generalises from simple copula

constructions to more complex predications.

Complex Predications

The formulae in (7), (9) and (10) encode a simple supertype/sense extension analysis of
metaphors involving predicative uses of the copula be. As pointed out, any instantiation
of the unary predicate P that makes (7), (9) and (10) true denotes a superset including
both the denotation of 7 and the elements in the denotation of fox. It is here that the
sense extension dimension of metaphor is located in our approach. The basic idea can

easily be generalised to cover more complex predications as exemplified by the well-worn

(12) ¢‘My car drinks gasoline.’’

To a first approximation and following the lead of the approach developed above the

non-literal use of (12) can be paraphrased as

(13) My car and gasoline stand in a relation which is a property of all

drink relatiomns.

The relation in question is probably something like the consume relation. Every drink
event is also a consume event (but not vice versa). (13) is readily formalisable. Here we
translate the definite possessive NP my car as the constant ¢ and simplify the

mereological NP gasoline as g:5

(14) 3R (R g ¢ ANVaVy(drink y x — Ry x))
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R is of type (e, (e, 1)), i.e. it is a binary relation between entities. As was the case with the
simple predication in (7) above, (14) is trivialised by the universal relation R (where e.g.
is related to y if = is identical with itself and y is identical with itself). Following (9) this

can be ruled out as follows:

(15) dR (R g ¢ ANVaVy(drink y x - Ry x) AN=VaVy R y x).

Following the approach developed in the previous section, the translation can be
strengthened to requiring minimal or proto-typical instances of 2-place relations R relative
to drink.

The consume relation provides one of the instantiations of R in (14). Notice that (14)
fixes a potential selection restriction violation between drink and its subject NP (-
animate). Assume that drink subcategorises for a (+ animate) subject NP. (14) forces R
to generalise drink so that it can apply to my car (- animate) and gasoline. Further, by
itself (14) does not support any inference as to excessive amounts of consumption often
attributed to (12). Example (12) is similar to the following which was suggested by one of

the anonymous referees as a challenge for the approach:

(16) ‘I wrestled with the idea.’’

Appendix B provides an extension of the Prolog implementation of the compositional

syntax semantics interface presented below which treats example (16) analogous to (12):

(17) Myself and the idea stand in a relation which is a property of all
wrestling relations.
Resolution

The reduced simile reading IP(P j AVx(foxr z — P x)) of (1) is weak and trivialised by

the universal property. Trivialisation can be excluded in a number of ways as exemplified
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in (9), (10) and (11). Trivial use of simile (and metaphor in the reduced simile account) in
actual communicative situations is probably quite rare.0 What makes simile and
metaphor interesting is the task of finding non-trivial (i.e. informative) instances of the
property P shared between tenor and vehicle. From the existentially quantified formula
offered as a reduced simile reading of (1) we cannot deduce much: existential
quantification over P amounts to a (possibly infinite) disjunction over suitable predicates
of the type of P whose extension is required to include both tenor and vehicle. However,
rather than deriving inferences from the reduced simile reading, we can look for proofs
that given some background theory (premises in a knowledge base) allow us to deduce the
reduced simile reading. Such proofs contain candidate instances of shared properties that
enable us to existentially quantify over them. Consider the following simple example (we

use the universal quantification approximation of genericity):

clever j, Vx(foxr x — clever z) - IP(P j AVx(foxr x — P x))

In order to find suitable resolvents [P = clever] we have to inspect proofs. The question is
now is there a systematic (i.e. automatic) way of searching for and inspecting such proofs?

A signed tableaux proof of the above inference looks as follows:

1 T clever j

2T Vz(for © — clever x)

3 F AP[P j AVz(for © — P )]

4 F clever j AVx(fox x — clever x)

5 F clever j \ 6 F Vx(for x — clever x)

The trick here is, of course, in the step from line 3 to line 4 in the tableaux. We know that
in order to close the tableaux we need to find formulas corresponding to lines 1 and 2 but
signed F. However, ideally, we do not want to rely on human intelligence and insight to

guide and inspect proofs. This is where free variable tableaux come to the rescue.
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Without going into great detail (Fitting, 1996) the basic idea is to delay instantiation of
especially introduced variables as long as possible in the development of a tableaux,
ideally until closure of a branch. Tracking such variables provides candidate resolutions. A
free variable tableaux version of our proof is given below (the predicate variable

introduced in going from step 3 to 4 is II):

1 T clever j

2T Va(for x — clever x)

3 F AP[P j AVz(fox x — P )]

4 F IT j AVz(for © — 11 x)

5 F IT j \ 6 F Vx(forx—1Ix)

This tableaux can be closed by matching lines 5 and 1, and lines 6 and 2, thereby
instantiating I to clever, which yields a candidate resolution of P.

Notice, that there is a striking parallel between our deductive approach and
structure mapping (SM) approaches such as (Falkenheiner et.al., 1989), (Veale and

Keane, 1992), summarised as:

LOGIC : Premises F  Reduced Simile
SM: Knowledge Base Graph O  Metaphor Graph
where D is subgraph isomorphism. What differentiates the two approaches is that
structure mapping approaches usually intend to give an account of the dynamics of
metaphor comprehension whereas our approach explicates truth conditions. As pointed
out, logic (intuitionistic, modal or dynamic) can be used to model the dynamics of

comprehension but this is beyond the more narrow confines of the present paper.

A Compositional Syntax—Semantics Interface:

In this section we show that the different readings (both literal and metaphorical)

associated with (1) and (12) do not come out of thin air but can be computed in a
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systematic fashion given a syntactic analysis of the strings at stake. A compositional
syntax-semantics interface is specified by a pairing of syntactic formation and semantic
translation rules and a specification of the translation of lexical elements. The translation

function is indicated °:

S — NPVP S° = NP°(VP°)

VP — V NP VP° = V°(NP°)

We assume a generalised quantifier (Barwise and Cooper, 1981) type analysis of NPs.

NP — john,gasoline,my car,a fox V  — is,drinks

The type theory translations of the lexical symbols of the grammar are:

john° = AP.Pj gasoline® := AP.Pg
my car® = AP.Pc a fox° ;= AP.3z(fox x AP 1)
a foxy, = APVz(forz— P z) a fox; = AP.(pty fozx P)
is® = APXzPMy(z =y) is,, = AQAz3P(P zAQ P)
isp 4 = AQAzAP(P 2AQ P A-VzP 1)
drinks® := AQAzQM\y drink y x
drinks;, := AQAzQAy IR(R y z AV2Vw(drink z w — R z w))

In this grammar we have glossed over the internal complexity of N Ps. We assume that an
indefinite NP such as a fox is ambiguous between an existential, a universal (gen  our
simplified, quasi-generic) and a prototype (7) interpretation. The copula is is ambiguous
between a literal and a non-literal (u) interpretation, as is the transitive verb drinks. For
good measure, we have added the interpretation of the copula which includes a
non-triviality constraint (x4, —¢r) as in (9). A minimality constraint (10) can be
implemented along the same lines. The reader is invited to check that the grammar maps

(1) to Fz(foxr z ANz = j), (7), (9) and (11), i.e. the grammar generates both literal and
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non-literal interpretations. It maps (12) to drink g ¢ and to (14). As it stands, the
grammar overgenerates: it combines the generic reading of the object NP with the literal
reading of is etc. Such readings can be excluded by features in a more detailed encoding
of the fragment. In Appendix A we provide a simple Prolog implementation of the
grammar and the syntax — semantics interface following (Pereira and Shieber, 1987) which

readers are invited to test.

Conclusion

In the present paper we have developed an approach to metaphor based on standard type
theory (a classical higher order logic). We capture an asymmetry between metaphor and
simile: the literal interpretation of a metaphor comes out as (mostly) false while its
non-literal interpretation is that of a corresponding reduced simile. Our theory captures
sense extension in that the property shared between tenor and vehicle includes at least the
extension of both. We have presented a compositional syntax semantics interface,
provided a Prolog implementation and sketched a deductive account of resolution. We
discussed how the approach addresses issues of generalisation, feature selection,
asymmetry, tension, trivialisation, prototypicality, truth conditions, comprehension and
generativeness. Summarising in the form of a slogan, our approach can be said to “rescue
a weak propositional content of metaphors.” To conclude we give our judgement on the
commonplace proposition (or metaphor ...) that classical logic, formal semantics and

metaphors are uneasy bedfellows: False!
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Appendix A

%% meta.pl A toy DCG implementation, Josef van Genabith, DCU, CA.

%% implication %h conjunction %% negation %% application



Metaphors, Logic and Type Theory 20

:- op(40,xfy,>). :- op(30,xfy,&). :- op(20,fy,”). :- op(15,yfx,0).
apply(la(X,Y),X,Y). %% application & reduction (Pereira & Shieber,1987)

/YA

s(8) --> np(NP), vp(VP), {apply (NP,VP,S)}.
vp(VP) --> v(V), np(NP), {apply(V,NP,VP)}.
np(la(P,Pj)) --> [john], {apply (P, john,Pj)}.

np(la(P,Pg)) --> [gasoline], {apply(P,gasoline,Pg)}.
np(la(P,Pc)) --> [my,car], {apply(P,car,Pc)}.
%% indefinite, then simplified quasi-generic, then prototype reading
np(la(Q,exists(X, fox(X) & Qx))) --> [a,fox], {apply(Q,X,Qx)}.
np(la(Q,forall (X, fox(X) > Qx))) --> [a,fox], {apply(Q,X,Qx)}.
np(la(Q,prty(fox,Q))) --> [a,fox].
%% first literal, then metaphorical reading
v(la(P,la(X,Sem))) --> [is], {apply(P,la(Y,X=Y),Sem)}.
v(la(Q, (1a(Y,exists(P,P@Y & QP))))) --> [is], {apply(Q,la(X,P@X), QP)}.
%% first literal, then metaphorical reading
v(la(Q,la(X,Sem))) --> [drinks], {apply(Q,la(Y,drink(X,Y)),Sem)}.
v(la(Q,la(X,Sem))) --> [drinks],
{apply(Q,la(Y,exists(R,RQYQX & forall(Z,forall(W,drink(Z,W) > ROWQZ)))),Sem)}.
T
test :-
t(N,Sent), s(Sem,Sent,[]), write(N), write(’:’), write(’ ’), write(Sent),
nl, write(’Sem:’), write(’:’), write(’ ’), write(Sem), nl, nl, fail.
test.
t(1, [john,is,a,fox]). t(2, [my,car,drinks,gasoline]).

T



The grammar overgenerates

implementation:

| ?7- test.

1: [john,is,a,fox]
1: [john,is,a,fox]
1: [john,is,a,fox]
1: [john,is,a,fox]
1: [john,is,a,fox]

1: [john,is,a,fox]

Sem: :

Sem: :

Sem: :

Sem: :

Sem: :

Sem: :
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. This can be ruled out in terms of features in a more realistic

exists(X,fox(X)&(john=X))
forall(X,fox(X)>(john=X))
prty(fox,la(X,john=X))
exists(P,P@john&exists(X,fox(X)&PQX))
exists(P,P@john&forall (X,fox(X)>P@X))

exists(P,P@john&prty(fox,la(X,PQX)))

2: [my,car,drinks,gasoline] Sem:: drink(car,gasoline)

2: [my,car,drinks,gasoline] Sem:: exists(P,P@gasoline@car&

forall (X,forall(Y,drink(X,Y)>P@XQY)))

Appendix B

To handle example (16): ‘I wrestled with the idea’’ add the following

np(la(P,Pi)) --> [i],

{apply(P,i,Pi)}.

np(la(P,Pi)) --> [the,ideal, {apply(P,idea,Pi)}.

%% first literal, then metaphorical reading

v(la(Q,la(X,Sem))) --> [wrestled,with], {apply(Q,la(Y,wrestle(X,Y)),Sem)}.

v(la(Q,la(X,Sem))) --> [wrestled,with], {apply(Q,la(Y,exists(R,RQYEX &

forall(Z,forall(W,wrestle(Z,W) > ROWOZ)))),Sem)}.

The query responses are as expected:

3: [i,wrestled,with,the,idea] Sem:: wrestle(i,idea)

3: [i,wrestled,with,the,ideal Sem:: exists(P,PQidea@i&

forall(X,forall(Y,wrestle(X,Y)>P0XQY)))
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Footnotes

1This is the reason why simple meaning postulates (axioms) are of limited use in
treatments of metaphor. The problem is the following: consider the metaphorical sentence
in (1) above. Assume that it translates as foz(j). Assume further that, for the sake of the
argument, we have an axiom stating that all foxes are clever. From these we can deduce
fox(j), Yz (fox(x) — clever(xz)) F clever(j) as a possible interpretation of (1). This
inference is fine even if an additional human(j) axiom is in force. However, things start
turning sour as soon as we have another axiom in place that states that the sets of
humans and foxes are disjoint: Yz—(human(z) A for(x)). Given this and our previous
assumptions, inconsistency strikes: we can prove human(j) A —human(j), or indeed any
conclusion we wish. The approach developed in the present paper avoids such pitfalls.

2The remaining connectives and quantifiers are defined from these in the usual
fashion: p V1ip = (= A 1)), = 1 = =(p A 1)), Jzp = =Vr—p .

3This example was provided by one of the anonymous reviewers.

4The class fox stands proxy for a prototypical individual. prty simply pairs the class
with its perceived cultural stereotypes.

Readers unfamiliar with the functional type theory notation may be puzzled by the
order of arguments in R g ¢ in (14). The contribution g of the direct object comes first
followed by the contribution ¢ of the subject. In the Prolog implementations in
Appendices A and B we switch back to the familiar relational representations: R(c,g).

6Mostly confined to jokes.



