601 research outputs found

    Critical jamming of frictional grains in the generalized isostaticity picture

    Get PDF
    While frictionless spheres at jamming are isostatic, frictional spheres at jamming are not. As a result, frictional spheres near jamming do not necessarily exhibit an excess of soft modes. However, a generalized form of isostaticity can be introduced if fully mobilized contacts at the Coulomb friction threshold are considered as slipping contacts. We show here that, in this framework, the vibrational density of states (DOS) of frictional discs exhibits a plateau when the generalized isostaticity line is approached. The crossover frequency to elastic behavior scales linearly with the distance from this line. Moreover, we show that the frictionless limit, which appears singular when fully mobilized contacts are treated elastically, becomes smooth when fully mobilized contacts are allowed to slip.Comment: 4 pages, 4 figures, submitted to PR

    Materialbearbeitung durch Clusterionenbeschuss

    Get PDF

    Pseudomonas fluorescens CHA0 maintains carbon delivery to Fusarium graminearum-infected roots and prevents reduction in biomass of barley shoots through systemic interactions

    Get PDF
    Soil bacteria such as pseudomonads may reduce pathogen pressure for plants, both by activating plant defence mechanisms and by inhibiting pathogens directly due to the production of antibiotics. These effects are hard to distinguish under field conditions, impairing estimations of their relative contributions to plant health. A split-root system was set up with barley to quantify systemic and local effects of pre-inoculation with Pseudomonas fluorescens on the subsequent infection process by the fungal pathogen Fusarium graminearum. One root half was inoculated with F. graminearum in combination with P. fluorescens strain CHA0 or its isogenic antibiotic-deficient mutant CHA19. Bacteria were inoculated either together with the fungal pathogen or in separate halves of the root system to separate local and systemic effects. The short-term plant response to fungal infection was followed by using the short-lived isotopic tracer 11CO2 to track the delivery of recent photoassimilates to each root half. In the absence of bacteria, fungal infection diverted carbon from the shoot to healthy roots, rather than to infected roots, although the overall partitioning from the shoot to the entire root system was not modified. Both local and systemic pre-inoculation with P. fluorescens CHA0 prevented the diversion of carbon as well as preventing a reduction in plant biomass in response to F. graminearum infection, whereas the non-antibiotic-producing mutant CHA19 lacked this ability. The results suggest that the activation of plant defences is a central feature of biocontrol bacteria which may even surpass the effects of direct pathogen inhibition

    Energy-stable discretization of the one-dimensional two-fluid model

    Full text link
    In this paper we present a complete framework for the energy-stable simulation of stratified incompressible flow in channels, using the one-dimensional two-fluid model. Building on earlier energy-conserving work on the basic two-fluid model, our new framework includes diffusion, friction, and surface tension. We show that surface tension can be added in an energy-conserving manner, and that diffusion and friction have a strictly dissipative effect on the energy. We then propose spatial discretizations for these terms such that a semi-discrete model is obtained that has the same conservation properties as the continuous model. Additionally, we propose a new energy-stable advective flux scheme that is energy-conserving in smooth regions of the flow and strictly dissipative where sharp gradients appear. This is obtained by combining, using flux limiters, a previously developed energy-conserving advective flux with a novel first-order upwind scheme that is shown to be strictly dissipative. The complete framework, with diffusion, surface tension, and a bounded energy, is linearly stable to short wavelength perturbations, and exhibits nonlinear damping near shocks. The model yields smoothly converging numerical solutions, even under conditions for which the basic two-fluid model is ill-posed. With our explicit expressions for the dissipation rates, we are able to attribute the nonlinear damping to the different dissipation mechanisms, and compare their effects

    Graph-informed simulation-based inference for models of active matter

    Full text link
    peer reviewedMany collective systems exist in nature far from equilibrium, ranging from cellular sheets up to flocks of birds. These systems reflect a form of active matter, whereby individual material components have internal energy. Under specific parameter regimes, these active systems undergo phase transitions whereby small fluctuations of single components can lead to global changes to the rheology of the system. Simulations and methods from statistical physics are typically used to understand and predict these phase transitions for real-world observations. In this work, we demonstrate that simulation-based inference can be used to robustly infer active matter parameters from system observations. Moreover, we demonstrate that a small number (from one to three) snapshots of the system can be used for parameter inference and that this graph-informed approach outperforms typical metrics such as the average velocity or mean square displacement of the system. Our work highlights that high-level system information is contained within the relational structure of a collective system and that this can be exploited to better couple models to data
    corecore