37 research outputs found

    Life-threatening ventricular arrhythmia prediction in patients with dilated cardiomyopathy using explainable electrocardiogram-based deep neural networks

    Get PDF
    AIMS: While electrocardiogram (ECG) characteristics have been associated with life-threatening ventricular arrhythmias (LTVA) in dilated cardiomyopathy (DCM), they typically rely on human-derived parameters. Deep neural networks (DNNs) can discover complex ECG patterns, but the interpretation is hampered by their 'black-box' characteristics. We aimed to detect DCM patients at risk of LTVA using an inherently explainable DNN. METHODS AND RESULTS: In this two-phase study, we first developed a variational autoencoder DNN on more than 1 million 12-lead median beat ECGs, compressing the ECG into 21 different factors (F): FactorECG. Next, we used two cohorts with a combined total of 695 DCM patients and entered these factors in a Cox regression for the composite LTVA outcome, which was defined as sudden cardiac arrest, spontaneous sustained ventricular tachycardia, or implantable cardioverter-defibrillator treated ventricular arrhythmia. Most patients were male (n = 442, 64%) with a median age of 54 years [interquartile range (IQR) 44-62], and median left ventricular ejection fraction of 30% (IQR 23-39). A total of 115 patients (16.5%) reached the study outcome. Factors F8 (prolonged PR-interval and P-wave duration, P < 0.005), F15 (reduced P-wave height, P = 0.04), F25 (increased right bundle branch delay, P = 0.02), F27 (P-wave axis P < 0.005), and F32 (reduced QRS-T voltages P = 0.03) were significantly associated with LTVA. CONCLUSION: Inherently explainable DNNs can detect patients at risk of LTVA which is mainly driven by P-wave abnormalities

    The combination of carboxy-terminal propeptide of procollagen type I blood levels and late gadolinium enhancement at cardiac magnetic resonance provides additional prognostic information in idiopathic dilated cardiomyopathy - A multilevel assessment of myocardial fibrosis in dilated cardiomyopathy

    Get PDF
    Aims To determine the prognostic value of multilevel assessment of fibrosis in dilated cardiomyopathy (DCM) patients. Methods and results We quantified fibrosis in 209 DCM patients at three levels: (i) non-invasive late gadolinium enhancement (LGE) at cardiac magnetic resonance (CMR); (ii) blood biomarkers [amino-terminal propeptide of procollagen type III (PIIINP) and carboxy-terminal propeptide of procollagen type I (PICP)], (iii) invasive endomyocardial biopsy (EMB) (collagen volume fraction, CVF). Both LGE and elevated blood PICP levels, but neither PIIINP nor CVF predicted a worse outcome defined as death, heart transplantation, heart failure hospitalization, or life-threatening arrhythmias, after adjusting for known clinical predictors [adjusted hazard ratios: LGE 3.54, 95% confidence interval (CI) 1.90-6.60; P < 0.001 and PICP 1.02, 95% CI 1.01-1.03; P = 0.001]. The combination of LGE and PICP provided the highest prognostic benefit in prediction (likelihood ratio test P = 0.007) and reclassification (net reclassification index: 0.28, P = 0.02; and integrated discrimination improvement index: 0.139, P = 0.01) when added to the clinical prediction model. Moreover, patients with a combination of LGE and elevated PICP (LGE+/PICP+) had the worst prognosis (log-rank P < 0.001). RNA-sequencing and gene enrichment analysis of EMB showed an increased expression of pro-fibrotic and pro-inflammatory pathways in patients with high levels of fibrosis (LGE+/PICP+) compared to patients with low levels of fibrosis (LGE-/PICP-). This would suggest the validity of myocardial fibrosis detection by LGE and PICP, as the subsequent generated fibrotic risk profiles are associated with distinct cardiac transcriptomic profiles. Conclusion The combination of myocardial fibrosis at CMR and circulating PICP levels provides additive prognostic value accompanied by a pro-fibrotic and pro-inflammatory transcriptomic profile in DCM patients with LGE and elevated PICP

    Cardiac Inflammation in Adult-Onset Genetic Dilated Cardiomyopathy

    No full text
    Dilated cardiomyopathy (DCM) has a genetic cause in up to 40% of cases, with differences in disease penetrance and clinical presentation, due to different exogeneous triggers and implicated genes. Cardiac inflammation can be the consequence of an exogeneous trigger, subsequently unveiling a phenotype. The study aimed to determine cardiac inflammation in a cohort of genetic DCM patients and investigate whether it associated with a younger disease onset. The study included 113 DCM patients with a genetic etiology, of which 17 had cardiac inflammation as diagnosed in an endomyocardial biopsy. They had a significant increased cardiac infiltration of white blood, cytotoxic T, and T-helper cells (p p = 0.015; 50 years (interquartile range (IQR) 42–53) versus 53 years (IQR 46–61). However, cardiac inflammation was not associated with a higher incidence of all-cause mortality, heart failure hospitalization, or life-threatening arrhythmias (hazard ratio 0.85 [0.35–2.07], p = 0.74). Cardiac inflammation is associated with an earlier disease onset in patients with genetic DCM. This might indicate that myocarditis is an exogeneous trigger unveiling a phenotype at a younger age in patients with a genetic susceptibility, or that cardiac inflammation resembles a ‘hot-phase’ of early-onset disease

    Clonal Hematopoiesis of Indeterminate Potential From a Heart Failure Specialist's Point of View

    No full text
    ABSTRACT Clonal hematopoiesis of indeterminate potential (CHIP) is a common bone marrow abnormality induced by age‐related DNA mutations, which give rise to proinflammatory immune cells. These immune cells exacerbate atherosclerotic cardiovascular disease and may induce or accelerate heart failure. The mechanisms involved are complex but point toward a central role for proinflammatory macrophages and an inflammasome‐dependent immune response (IL‐1 [interleukin‐1] and IL‐6 [interleukin‐6]) in the atherosclerotic plaque or directly in the myocardium. Intracardiac inflammation may decrease cardiac function and induce cardiac fibrosis, even in the absence of atherosclerotic cardiovascular disease. The pathophysiology and consequences of CHIP may differ among implicated genes as well as subgroups of patients with heart failure, based on cause (ischemic versus nonischemic) and ejection fraction (reduced ejection fraction versus preserved ejection fraction). Evidence is accumulating that CHIP is associated with cardiovascular mortality in ischemic and nonischemic heart failure with reduced ejection fraction and involved in the development of heart failure with preserved ejection fraction. CHIP and corresponding inflammatory pathways provide a highly potent therapeutic target. Randomized controlled trials in patients with well‐phenotyped heart failure, where readily available anti‐inflammatory therapies are used to intervene with clonal hematopoiesis, may pave the way for a new area of heart failure treatment. The first clinical trials that target CHIP are already registered

    Inflammation and Syndecan-4 Shedding from Cardiac Cells in Ischemic and Non-Ischemic Heart Disease

    No full text
    Circulating biomarkers reflecting cardiac inflammation are needed to improve the diagnostics and guide the treatment of heart failure patients. The cardiac production and shedding of the transmembrane proteoglycan syndecan-4 is upregulated by innate immunity signaling pathways. Here, we investigated the potential of syndecan-4 as a blood biomarker of cardiac inflammation. Serum syndecan-4 was measured in patients with (i) non-ischemic, non-valvular dilated cardiomyopathy (DCM), with (n = 71) or without (n = 318) chronic inflammation; (ii) acute myocarditis (n = 15), acute pericarditis (n = 3) or acute perimyocarditis (23) and (iii) acute myocardial infarction (MI) at day 0, 3 and 30 (n = 119). Syndecan-4 was investigated in cultured cardiac myocytes and fibroblasts (n = 6–12) treated with the pro-inflammatory cytokines interleukin (IL)-1β and its inhibitor IL-1 receptor antagonist (IL-1Ra), or tumor necrosis factor (TNF)α and its specific inhibitor infliximab, an antibody used in treatment of autoimmune diseases. The levels of serum syndecan-4 were comparable in all subgroups of patients with chronic or acute cardiomyopathy, independent of inflammation. Post-MI, syndecan-4 levels were increased at day 3 and 30 vs. day 0. IL-1Ra attenuated IL-1β-induced syndecan-4 production and shedding in vitro, while infliximab had no effect. In conclusion, syndecan-4 shedding from cardiac myocytes and fibroblasts was attenuated by immunomodulatory therapy. Although its circulating levels were increased post-MI, syndecan-4 did not reflect cardiac inflammatory status in patients with heart disease

    Phenotypic clustering of dilated cardiomyopathy patients highlights important pathophysiological differences

    Get PDF
    The dilated cardiomyopathy (DCM) phenotype is the result of combined genetic and acquired triggers. Until now, clinical decision-making in DCM has mainly been based on ejection fraction (EF) and NYHA classification, not considering the DCM heterogenicity. The present study aimed to identify patient subgroups by phenotypic clustering integrating aetiologies, comorbidities, and cardiac function along cardiac transcript levels, to unveil pathophysiological differences between DCM subgroups
    corecore