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Aims While electrocardiogram (ECG) characteristics have been associated with life-threatening ventricular arrhythmias
(LTVA) in dilated cardiomyopathy (DCM), they typically rely on human-derived parameters. Deep neural networks
(DNNs) can discover complex ECG patterns, but the interpretation is hampered by their ‘black-box’ characteristics.
We aimed to detect DCM patients at risk of LTVA using an inherently explainable DNN.

Methods
and results

In this two-phase study, we first developed a variational autoencoder DNN on more than 1 million 12-lead median beat
ECGs, compressing the ECG into 21 different factors (F): FactorECG. Next, we used two cohorts with a combined total
of 695 DCM patients and entered these factors in a Cox regression for the composite LTVA outcome, which was de-
fined as sudden cardiac arrest, spontaneous sustained ventricular tachycardia, or implantable cardioverter-defibrillator
treated ventricular arrhythmia. Most patients were male (n= 442, 64%) with a median age of 54 years [interquartile
range (IQR) 44–62], and median left ventricular ejection fraction of 30% (IQR 23–39). A total of 115 patients
(16.5%) reached the study outcome. Factors F8 (prolonged PR-interval and P-wave duration, P, 0.005), F15 (reduced
P-wave height, P= 0.04), F25 (increased right bundle branch delay, P= 0.02), F27 (P-wave axis P, 0.005), and F32 (re-
duced QRS-T voltages P= 0.03) were significantly associated with LTVA.

Conclusion Inherently explainable DNNs can detect patients at risk of LTVA which is mainly driven by P-wave abnormalities.
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What’s new?

• This is the first study to use an inherently interpretable
deep neural network (variational autoencoder, VAE) for the
prediction of life-threatening arrhythmias in patients with
dilated cardiomyopathy using raw electrocardiogram (ECG)
signals.

• The FactorECG summarizes the median beat ECG, including
most of its features, into 21 generative factors of variation [see
https://dcm.ecgx.ai/]. This novel strategy allows to simultaneously
evaluate most characteristics that make up an ECG automatically,
rather than using selected and human-derived ECG features.

• While the VAE encompasses complete electrocardiograms,
visualisation of pivotal ECG features showed that network
predictions were mainly driven by P-wave abnormalities.

• These P-wave abnormalities did not correlate with their anatom-
ical analogues, such as left atrial dimensions, suggesting an electro-
physiological substrate.

Introduction
Patients with non-ischaemic dilated cardiomyopathy (DCM) have
an estimated annual risk of life-threatening ventricular arrhyth-
mias (LVTAs) of 4.5% and may potentially benefit from implanta-
ble cardioverter-defibrillator (ICD) implantation.1,2 A novel risk
model (DCM-SVA risk) for predicting LTVA was recently pub-
lished and includes easily accessible clinical parameters, such as
the history of non-sustained ventricular tachycardia (VT), QRS
duration, and left ventricular ejection fraction (LVEF).3 More com-
plex electrocardiogram (ECG) characteristics such as fragmented
QRS waves, heart rate variability, and T-wave alternans have also
been associated with LTVA, but rely on manually derived ECG
parameters that remain difficult to standardize, hampering their
integration into daily clinical practice.1 By using raw ECG signals
and machine learning techniques, manual feature extraction is
not necessary. Moreover, novel and more subtle parameters
may be detected.4

Deep neural networks (DNN) have proven to be potent machine
learning algorithms for diagnostic classification tasks using raw ECGs
signals. Previous studies using DNNs on raw ECG signals in cardio-
myopathies report high performance in disease classification and
triaging.5,6 However, because of the inherent lack of ‘explainability’
of DNNs, clinical implementation remains limited.7 Different techni-
ques may assist in interpreting DNNs. A recently introduced pipeline
for fully explainable DNNs for ECG analysis uses variational autoen-
coders (VAEs),8 that can compress the ECG into a lower number of
explanatory and independent generative factors (FactorECG), which
can subsequently be used in interpretable algorithms (such as Cox
regression).9

In this study, we aimed (i) use an inherently interpretable DNN
for predicting potentially LTVA based on ECGs in patients with
non-ischemic DCM, assess its added value above conventional
ECG parameters and current guidelines and (ii) interpret the model
by visualizing pivotal ECG features.

Methods

Study participants
In this retrospective cohort study, we included consecutive adult patients
with DCM as defined by the European Society of Cardiology (ESC)
guidelines were included from the UMCU and MUMC+.2 Only patients
with a baseline non-paced 12-lead ECG acquired before left ventricular
assist device (LVAD) implantation or heart transplantation (HTx) were
eligible. Patients with a cardiac resynchronization therapy (CRT) were
excluded, as it positively affects reverse remodelling which may reduce
arrhythmias.10 This study was conducted in accordance with the princi-
ples laid out in the Declaration of Helsinki and in line with guidelines pro-
vided by ethics committees and the national GDPR legislature. The
participants from the UMCU cohort were included using the opt-out
procedure. The UMCU cohort was exempt from the Medical
Research Involving Human Subjects Act (WMO) as per the judgement
of the Medical Ethics Committee (18/446 and 19/222 UMCU, The
Netherlands) including the requirement for informed consent. The par-
ticipants of the Maastricht cohort signed informed consent at enrolment.

Data acquisition
For all subjects, the ECG closest to the date of the first presentation was
obtained which was considered ‘baseline” for the purpose of this study.
The median time between diagnosis and ECG was 0 (IQR 0–28) days. All
ECGs were exported from the MUSE ECG system (version 8; GE
Healthcare, Chicago, IL, USA) in raw voltage format. The recordings
were made using a General Electric MAC V, 5000 or 5500 device and ac-
quired at either 250 or 500 Hz. Resampling to 500 Hz was performed via
linear interpolation and transformation into 1.2-s median beats was
achieved by aligning all QRS-complexes of the same shape (e.g. excluding
premature ventricular complexes) and taking the median voltage to gen-
erate a representative P-QRS-T complex. Echocardiographic measure-
ments were extracted from the electronic health record using
methods described before.11

Pre-training and explainability of the
variational autoencoder
A two-phase approach was used in this study, where a VAE was first pre-
trained on the complete UMCU ECG dataset, and them used in the train-
ing step to find associations with LTVA (Figure 1). VAEs are unsupervised
deep learning encoder–decoder convolutional neural networks that are
optimized to reconstruct their training data with a lower-dimensional re-
presentation (i.e. using less data) than the original training data (in this
case ECGs). The current VAE network is enforced with a specific func-
tion to reach maximum disentanglement of lower-dimensional represen-
tation (i.e. to produce generative factors in the ECG that operate
independently: the FactorECG).12 Resting 12-lead 10-s ECGs of 251
473 unique patients (1 114 331 ECGs) were exported from the
UMCU ECG system and used for pre-training of the VAE. In a prior
study, the optimal number of dimensions was found to be 21, considering
the trade-off of good reconstruction disentanglement and encoding for
visible ECG abnormalities.8

Explainability of the individual factors was obtained on a model level
using factor traversals. Starting with a mean FactorECG for this popula-
tion (i.e. the mean value of the 21 ECG factors), a median beat ECG is
reconstructed using the decoder. Subsequently, for each individual
ECG factor, values between −4 and 4 are added and ECGs are recon-
structed for every value. Meanwhile, values for the other factors are
kept constant. This way we are able to visualize the effect of a single
ECG factor on the median beat ECG morphology in this cohort
(Figure 2). On the individual patient level, explainability is obtained by
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investigating the FactorECG values of that specific ECG. A tool to visu-
alize the factors interactively can be found at https://dcm.ecgx.ai. The
architecture and model training process were implemented using
PyTorch (version 1.7.0+ cu110) in Python (version 3.6.7).

Outcome definitions
The primary study outcome was LTVA, defined as the composite out-
come of sustained ventricular tachycardia (VT) .100 b.p.m. lasting
.30 s or with hemodynamic compromise, ventricular fibrillation (VF),
sudden cardiac death (SCD, defined as the death of cardiac origin that
occurred unexpectedly within 1 h after the onset of new symptoms)
or appropriate ICD therapy (defined as any ICD therapy delivered by
the device in response to VT or VF according to stored intracardiac
electrograms).3

Statistical analyses
For the baseline table, mean+ SD or median (interquartile range) were
used where appropriate. Missingness in baseline data was not addressed.
Each baseline ECG’s generative factors (the FactorECGs, as computed by
the VAE encoder) were included in a Cox proportional hazards model
(Figure 1). All patients had a digitalized ECGavailable. The proportional ha-
zards assumptionwas tested. Hazard ratios (HR)were reported, and 95%

confidence intervals (CIs) were computed using 2000 bootstrap samples.
To rule out that the VAEmodel was solely considering already established
ECG characteristics (ventricular rate, PR-interval, QRS-duration, and
Bazett corrected QT-interval), a Cox proportional hazard model was
also fitted using these variables in a complete case analysis. The correla-
tions of the significant ECG factors were plotted against the left atrial
(LA) dimension and left atrial volume index (LAVI) measured on standard
care clinical echocardiography using both the first (closest to baseline) and
last (closest to follow-up) available measurements.11 Additionally a
Kaplan–Meier curve was plotted for one of the significant VAE generative
factors. All analyses were performed using Python (version 3.8.5).

Results

Patient characteristics
Baseline characteristics stratified by centre and outcome are de-
picted in Table 1. A total of 695 patients were included from the
UMCU and MUMC+, which were predominantly male (n= 442,
64%) with a median age of 54 years [interquartile range (IQR)
44–62] and median LVEF of 30% (IQR 23–39%). A total of 115
(17%) reached the study outcome in both centres combined during

Figure 1 Overview of the pre-training and training phases of the FactorECG algorithm. During the pre-training phase, 1.1 million 12-lead median
beat ECGs were included for the training of the VAE. The VAE was trained to compress all 12-lead median beat ECGs into 21 continuous factors of
variation (the FactorECG), that can subsequently be used to reconstruct the median beat ECG. The VAE is explainable by visualizing the influence of
the individual ECG factors on the ECG morphology using the decoder. In the training phase, for each of the 695 DCM patients, median beat ECGs
were encoded into 21 generative factors using the pre-trained encoder. These 21 generative ECG factors were used as an input in a Cox regression
model to predict life-threatening ventricular arrhythmias. The importance of each ECG factor was then determined by investigating the hazard ratios
of the standardized ECG factors. DCM, dilated cardiomyopathy; DNN, deep neural network; LTVA, life-threatening ventricular arrhythmia.
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a median follow-up of 4.3 years (IQR 2.0–7.5). In summary, patients
from the MUMC+ cohort had less severe symptoms at baseline with
primarily New York Heart Association classes I and II as opposed to
the UMCU cohort with primarily II and III, and a median LVEF of 33%
(IQR 25–40). A lower proportion of MUMC+ patients (25, 6%)
reached the study outcome of LTVA compared with 90 (28%)
UMCU patients.

Prediction of LTVAwith established ECG
variables
Established ECG variables (such as ventricular rate, PR-interval,
QRS-duration, and QTc-time) were entered in a ‘baseline’ Cox re-
gression model controlled for guideline indication [complete case
analysis with n= 577, excluding patients without a measurable
PR-interval (n= 118, due to atrial fibrillation/flutter)]. This baseline
model had a C-statistic of 0.58 (95% CI 0.52–0.64) and no significant
effects of: ventricular rate [HR 0.94 per 10 beat/s increase (95% CI
0.81–1.09), P= 0.41], QRS duration [HR 1.08 per 10 ms increase
(95% CI 0.98–1.19), P= 0.13] and QTc-time [HR 0.95 per 10 ms in-
crease (95% CI 0.88–1.03), P= 0.19]. The PR-interval was, however,
significantly associated with LTVA [HR 1.06 per 10 ms increase (95%
CI 1.00–1.13), P= 0.04]. The results of this model are depicted in
Supplementary material online, Table S1.

Prediction of LTVA with FactorECG
The VAE compressed the ECG data into 21 different ECG factors
and their factor traversals are available in Supplementary material
online, Figure S1. In Cox regression, F8 [HR 1.60; 95% CI (1.29–
1.99), P, 0.005], F15 [HR 0.81; 95% CI (0.66–0.99), P= 0.04], F25
[HR 0.77 95% CI (0.62–0.95), P= 0.02], F27 [HR 0.71, 95% CI

(0.57–0.88), P, 0.005], and F32 [HR 1.26, 95% CI (1.03–1.55), P=
0.03] were significantly associated with the outcome after correcting
for guideline indication (NYHA II/III and LVEF, 35%, P= 0.84).
C-statistic for the model was 0.67 (95% CI 0.62–0.72). A reconstruc-
tion of the significant generative factors (F8, F15, F25, F27, and F32) has
been illustrated in Figure 2. F8 encodes for PR-interval and P-wave
morphology, where high values increase PR-interval and broaden
the P-wave. F15 encodes for P-wave height and P/T-overlap, where
low values are correlated with atrial fibrillation and third-degree
AV-block. F25 encodes for conduction delays in the right bundle
(right bundle branch block), where low values increase the block.
F27 encodes for P- and R-axis deviation, where low values flatten
out the P-wave. F32 encodes for QRS-T amplitudes, with low values
reconstruct QRS-T microvoltages. Results of the Cox regression
model and the descriptions of the generative factors are present in
Table 2 and Supplementary material online, Table S2. The partial ef-
fects on outcome per significant factor have been plotted in
Supplementary material online, Figure S2. As an example, the ECGs
and their corresponding values of the generative factors of two pa-
tients were plotted in Figure 3. A summary figure of this study was
depicted in Figure 4. To address the possible effect of cardiac mem-
ory after pacing, a subgroup analysis was run excluding patients with
a pacemaker (n= 32) which showed similar factors to be important
(Supplementary material online, Table S3).

LA dimensions
To investigate the possibility that the identified factors were an effect
of anatomical substrates of P-wave abnormalities, such as atrial re-
modelling, first and last LAVI and LA dimensions (by outcome) of
complete UMCU cases (n= 219) were plotted (Supplementary

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 1 Patient characteristics at baseline (first evaluation) stratified by centre and outcome

UMCU all
(n=317)

UMCU without
LTVA (n=227)

UMCU with
LTVA (n=90)

MUMC all
(n=378)

MUMC without
LTVA (n=353)

MUMC with
LTVA (n=25)

Age (years), median (Q1–Q3) 52 (42–61) 51 (41–60) 52 (42–62) 55 (47–63) 56 (47–63) 54 (49–63)

Male sex 195 (62%) 129 (57%) 66 (74%) 247 (65%) 228 (65%) 19 (76%)

NYHA-class

I 53 (20%)* 36 (18%)* 17 (23%)* 158 (42%) 150 (43%) 8 (32%)

II 102 (39%)* 71 (36%)* 31 (41%)* 175 (46%) 163 (47%) 12 (48%)

III 79 (30%)* 56 (28%)* 23 (32%)* 37 (10%) 32 (9%) 5 (20%)

IV 27 (10%)* 36 (18%)* 4 (5%)* 8 (2%) 8 (2%) 0 (0)%

Diabetes mellitus 42 (13%) 31 (13%) 11 (12%) 52 (14%) 50 (14%) 2 (8%)

Hypercholesterolemia 37 (13%) 26 (13%) 11 (13%) 41 (11%) 38 (11%) 3 (12%)

(Ever) smoked 203 (64%) 145 (64%) 57 (63%) 77 (20%) 72 (20%) 5 (20%)

History of LTVA 42 (13%) 17 (7%) 25 (27%) 8 (2%) 7 (2%) 1 (4%)

Family history of DCM 133 (42%) 97 (43%) 36 (40%) 47 (14%) 39 (11%) 8 (32%)

ICD implantation 233 (74%) 145 (63%) 88 (97%) 0 (0%) 0 (0%) 0 (0%)

LVEF (%), median (Q1–Q3) 25 (20–33) 25 (20–33) 25 (19–32) 33 (25–40) 28 (22–37) 33 (25–41)

MRI LGE 84 (56%**) 60 (51%*) 24 (71%**) n/a n/a n/a

Baseline characteristics of the included cohorts. NYHA, New York Heart Association; LTVA, life-threatening ventricular arrhythmia; ICD, implantable cardioverter-defibrillator; LVEF,
left ventricular ejection fraction; *, of valid, in patients for which a NYHA class was noted in the electronic health record; MRI LGE, magnetic resonance imaging late gadolinium
enhancement; **, of valid, in patients with cardiac MRIs.
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material online, Figures S4–S7, respectively). LA’s were significantly
larger in the last echocardiography, compared with the first (P=
0.02, Supplementary material online, Figure S6). Next,

the relationship of LA dimensions with the significant factors was
plotted (Supplementary material online, Figure S8) which showed
no association between F8, F15, F25, F27, and F32 and LA dimensions.

Figure 2 Factor traversals for the ECG factors that were associated with LTVA in the DCM cohort. We start with a mean FactorECG for this
population (i.e. the mean value of the 21 ECG factors) and reconstruct an ECG using the decoder (white). Subsequently, for each individual ECG
factor, values between−4 (blue) and 4 (red) are added and ECGs are reconstructed for every value. Meanwhile, values for the other factors are kept
constant. This way we are able to visualize the effect of a single ECG factor on the median beat ECGmorphology in this cohort. For factors 8 and 32,
high values of the factors were associated with a higher risk of LTVA (left). For factors 15, 25, and 27, conversely, low values of the factors were
associated with a higher risk of LTVA (right). The FactorECG decoder reconstructs the full 12-lead median beat ECG, a selection of leads is shown in
this figure. DCM, dilated cardiomyopathy; LTVA, life-threatening ventricular arrhythmia.
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Discussion
This is the first study to use an explainable DNNs trained with (base-
line) ECGs for LTVA prediction in DCM patients on a multicentre da-
taset. By using an inherently explainable DNN architecture, we were
able to distinguish patients at risk for LTVA whilst allowing interpret-
ation and visualisation of pivotal ECG features.7 Themodel was able to
identify patients at the highest risk with a predominant network focus
on P-wave abnormalities. Furthermore, these identified P-wave abnor-
malities did not correlate to their anatomical analogues (LA dimen-
sion/LAVI), suggesting an electrophysiological substrate.

FactorECG findings in relation to prior
studies
The FactorECG encompasses the median beat ECG, including most
of its features, into 21 generative factors of variation (https://dcm.
ecgx.ai/). This novel strategy allows to simultaneously evaluate
most characteristics that make up an ECG automatically in much
smaller datasets, rather than using selected and human-derived
ECG features. Overall, the factors that were most predictive for
LTVA primarily encoded for several P-wave characteristics, such as

PR-duration, P-wave morphology, and P-wave axis (Figure 2). The
combination of reconstructed ECGs together with the hazard ratios
allows for a novel in-depth interpretation of a DNN’s features. A high
value in F8 for instance, leads to PR-prolongation with a broadened
P-wave, whereas a low value in F27 leads to removal of the P-wave,
which is associated with atrial fibrillation, a known clinical risk factor
for LTVA in DCM.3 Because the baseline model using established
ECG variables performed poorly, this indicated that the VAE genera-
tive factors aremore complex than solely the standard ECG intervals.
The combination of the 21 generative factors as well as their inter-
pretation allows for LTVAprediction and feature detection (Figure 3).

The fact that atrial (i.e. P-wave) abnormalities predict ventricular
events (i.e. LTVA) may be considered remarkable. However, this as-
sociation has been described before, and has been thought to be due
to shared mechanistic pathologies between atria and ventricles, such
as ion-channel abnormalities, or atrioventricular fibrosis due to atrial
remodelling.1,3,13 In a recently published population study of 13 580
participants, abnormal P-wave indices were independently asso-
ciated with LTVA, after adjustment for age, sex, race, and study cen-
tre.14 As it is likely that these P-wave indices are caused by atrial
remodelling, we investigated the association of anatomical LA char-
acteristics and our identified ECG factors. As expected, LA

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 2 Cox proportional hazards model of generative factors in both cohorts

Factors Factor descriptions Hazard
ratio

95% CI P-value

F1 Inferolateral ST deviation 0.91 0.72–1.14 0.39

F5 Inferolateral T-wave height and orientation 1.17 0.92–1.48 0.19

F6 P-wave height and/or shape 1.14 0.90–1.44 0.27

F8
a PR-interval (high values associated with first degree AV-block and reduced LVEF) 1.61 1.29–1.99 ,0.005

F9 T-wave height and orientation 1.12 0.89–1.39 0.34

F10 Ventricular rate 0.93 0.76–1.13 0.46

F11 Subtle P- and T-wave changes 1.00 0.83–1.21 0.97

F12 Onset of depolarization 1.08 0.86–1.36 0.50

F13 Anterior ST deviation 0.85 0.68–1.06 0.14

F15
a P-wave height and P/T-overlap (low values associated with third-degree AV-block and junctional

tachycardia)

0.81 0.66–0.99 0.04

F16 T-wave morphology 1.14 0.94–1.40 0.19

F17 Lateral ST deviation 1.08 0.85–1.38 0.51

F19 Precordial R-wave progression and combined P-QRS-T-amplitude 1.07 0.87–1.33 0.51

F22 Subtle T-wave changes 1.02 0.83–1.25 0.85

F23 P-wave height and/or shape 1.13 0.93–1.37 0.21

F25
a Right bundle branch delay (low values associated with ventricular tachycardia, RBBB, and reduced LVEF) 0.77 0.62–0.95 0.02

F26 Left bundle branch delay 1.02 0.81–1.29 0.85

F27
a P- and R-axis deviation (low values associated with AF, junctional bradycardia, ventricular tachycardia, and

left axis deviation)

0.71 0.57–0.88 ,0.005

F30 QR interval 0.92 0.74–1.16 0.48

F31 QRS-T amplitudes 0.86 0.71–1.05 0.15

F32
a QRS-T amplitudes (high values associated with microvoltages) 1.26 1.02–1.55 0.03

Results of Cox regression and explanation of (significant) factors including their association with known electrocardiographic and echocardiographic pathologies as described in Van
de Leur and Bos et al.8
aSignificant.
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A

B

Figure 3 Kaplan–Meier curve and examples for the predictive value of factor 8. A Kaplan–Meier (A) for factor 8 and (B) two ECGs of patients with
a low and high predicted 5-year LTVA risk are depicted. The values for each factor are depicted below the ECG, along with the outcomes of the
patient. The ECG on the left had a low value for factor 8, corresponding to a short PR and P-wave duration: this patient had a low predicted risk of
LTVA and did not reach the endpoint. The ECG on the right had a high value for factor 8, corresponding to a broad P-wave with a long PR-interval:
this patient had a high predicted risk of LTVA and reached the outcome.
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Cox-regression

Figure 4 Study summary figure, including the methods and results. The study population were patients with dilated cardiomyopathy, in which an
explainable pre-trained deep neural network (FactorECG) was trained for the outcome of life-threatening ventricular arrhythmias. This network
encoded the median beat ECG into 21 factors to generate an ECG using only these factors, allowing to evaluate most characteristics that make up an
ECG automatically, in a relatively small dataset. LVAD, left ventricular assist device. HTx, heart transplantation; CRT, cardiac resynchronization ther-
apy; ECG, electrocardiogram; VT, ventricular tachycardia; VF, ventricular fibrillation; SCD, sudden cardiac death; ICD, implantable cardioverter-
defibrillator; HR, hazard ratio; UMCU, University Medical Centre Utrecht; MUMC+=Maastricht University Medical Centre.
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dimensions increased significantly over time, indicating disease pro-
gression. However, we did not find any association to the significant
ECG factors, suggesting an exclusive electrophysiological substrate.
This is in line with other reports, in which individual ECG P-wave
changes were not reliable predictors of anatomic atrial
enlargement.15,16

Myocardial fibrosis is often seen in patients with DCM and may
cause zones of slow conduction in the myocardium, resulting in zigzag
pathways that are prone to causing ventricular tachycardias.17 These
cellular mechanisms may be visible on the ECG as increased QRS dur-
ation and bundle branch block or low voltages. In this study, F25 re-
flects increased QRS duration in case of right bundle branch blocks
and was associated with LTVA as well. Left bundle branch block
(F26), however, was not associated with LTVA. As these patients gen-
erally are CRT recipients which were excluded from our analyses, this
may have caused an underestimation of the effect of left bundle branch
blocks in our model. Lower voltages seem to be reflected in the
FactorECG in F32, which is also associated with LTVA. More complex
electrocardiographic markers, such as QRS fractionation, T-wave al-
ternans, and QRS-T angle, have also been proposed.1 QRS fraction-
ation and T-wave abnormalities, however, did not appear as an
explanatory ECG variable in our model. T-wave alternans (defined
as changing T-wave morphology, occurring in each alternant beat)
has been repeatedly associated with LTVA in DCM, but cannot be
measured in the single ECG median beat that is used in the current
research. All these ECGmarkers are limited by standardization difficul-
ties, which may be decreased by (automatic) interpretation using
DNNs.1,4,18,19 As these networks are generally ‘black-box’ algorithms
that need very large datasets for training, a strategy of reducing the
ECG into its generative factors was used. These interpretable factors
were then used in a common statistical model (Cox regression), that
allowed for pivotal ECG features to be visualized.
Future studies are warranted to prospectively validate the identi-

fied ECG abnormalities and their electrophysiological substrate for
LTVA prediction in DCM, including a comparison with accepted
risk factors for LTVA. Since longer PR-interval and wide QRS dur-
ation were associated with LTVA, assessment of the value of hemi-
blocks may also be considered. Importantly, the addition of
prolonged measurements (such as exercise tests or Holter for
T-wave alternans) in DNNs remains to be investigated.

Genotype–phenotype associations
DCM has a genetic basis in 30–50% of cases and specific genotype–
phenotype associations are known to lead to arrhythmogenic phe-
notypes. One study analysed over 75.000 ECGs from the UK
Biobank and established several genetic ECG signatures. A polygenic
effect on PR-interval for instance, was identified, as well as genetic
variants related to the Q-wave in DCM. The strongest Q-wave locus
was discovered in BAG3: a gene in which pathogenic variants have
been described for DCMwith high penetrance and a high risk of pro-
gressive heart failure.20 As our VAE model assessed the entire ECG,
an interesting significant factor included QRS-T voltages (F32), with
high values in this factor associated with microvoltages. These micro-
voltages are an established ECG characteristic for phospholamban
cardiomyopathy, which can lead to both a highly arrhythmogenic
DCM phenotype and arrhythmogenic cardiomyopathy.2 Integrating

genome and phenome provides unique opportunities to study
ECG biology in relation to genetic risk which can be explored by fu-
ture studies using DNNs.20–22 Furthermore, these studies may pave
the way for using artificial intelligence models for risk prediction in
DCM patients to estimate an individual’s lifetime (genetic) risk of de-
veloping a specific arrhythmogenic DCM phenotype.

Limitations
This study has several limitations to address. Given the nature of
retrospective cohorts, data may contain missingness not at random
and bias may be present requiring prospective evaluation of the find-
ings. As the UMCU is a heart transplantation centre, this may have
caused a selection bias. To account for this, an external cohort
was added from the MUMC+ (non-heart transplantation centre)
of which the patients logically presented with less severe phenotypes
(Table 1). Unfortunately, the characteristics of the implanted ICDs in
this population were not available, which may have biased our find-
ings. More importantly, since ICD shocks are not a true surrogate for
sudden cardiac death in patients with DCM, the results need con-
firmation in a study population with fewer ICD carriers or consider-
ing only fast events (i.e..250/min).23 Because DCM is relatively rare,
the results may be due to sample size and require confirmation in lar-
ger (prospective) studies.

Conclusion
To the best of our knowledge, this study is the first to use interpret-
able DNNs trained with ECGs for LTVA prediction in DCM patients.
We observed that the VAE network combined with an interpretable
Cox regression can distinguish patients at risk of LTVA. The use of
this inherently explainable DNN pipeline allowed interpretation
and visualisation of pivotal ECG features.7 While the VAE network
encompasses the complete ECG, predictions were mainly driven
by P-wave abnormalities that did not correlate with LA dimensions,
suggesting an electrophysiological substrate. Future studies are war-
ranted to validate these findings and elucidate their electrophysio-
logical substrate for LTVA prediction in DCM.

Supplementary material
Supplementary material is available at Europace online.
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