24 research outputs found

    Universal finite-size scaling amplitudes in anisotropic scaling

    Full text link
    Phenomenological scaling arguments suggest the existence of universal amplitudes in the finite-size scaling of certain correlation lengths in strongly anisotropic or dynamical phase transitions. For equilibrium systems, provided that translation invariance and hyperscaling are valid, the Privman-Fisher scaling form of isotropic equilibrium phase transitions is readily generalized. For non-equilibrium systems, universality is shown analytically for directed percolation and is tested numerically in the annihilation-coagulation model and in the pair contact process with diffusion. In these models, for both periodic and free boundary conditions, the universality of the finite-size scaling amplitude of the leading relaxation time is checked. Amplitude universality reveals strong transient effects along the active-inactive transition line in the pair contact process.Comment: 16 pages, Latex, 2 figures, final version, to appear in J. Phys.

    The non-equilibrium phase transition of the pair-contact process with diffusion

    Full text link
    The pair-contact process 2A->3A, 2A->0 with diffusion of individual particles is a simple branching-annihilation processes which exhibits a phase transition from an active into an absorbing phase with an unusual type of critical behaviour which had not been seen before. Although the model has attracted considerable interest during the past few years it is not yet clear how its critical behaviour can be characterized and to what extent the diffusive pair-contact process represents an independent universality class. Recent research is reviewed and some standing open questions are outlined.Comment: Latexe2e, 53 pp, with IOP macros, some details adde

    Range expansion with mutation and selection: dynamical phase transition in a two-species Eden model

    Get PDF
    The colonization of unoccupied territory by invading species, known as range expansion, is a spatially heterogeneous non-equilibrium growth process. We introduce a two-species Eden growth model to analyze the interplay between uni-directional (irreversible) mutations and selection at the expanding front. While the evolutionary dynamics leads to coalescence of both wild-type and mutant clusters, the non-homogeneous advance of the colony results in a rough front. We show that roughening and domain dynamics are strongly coupled, resulting in qualitatively altered bulk and front properties. For beneficial mutations the front is quickly taken over by mutants and growth proceeds Eden-like. In contrast, if mutants grow slower than wild-types, there is an antagonism between selection pressure against mutants and growth by the merging of mutant domains with an ensuing absorbing state phase transition to an all-mutant front. We find that surface roughening has a marked effect on the critical properties of the absorbing state phase transition. While reference models, which keep the expanding front flat, exhibit directed percolation critical behavior, the exponents of the two-species Eden model strongly deviate from it. In turn, the mutation-selection process induces an increased surface roughness with exponents distinct from that of the classical Eden model

    Absorbing Phase Transition in a Four State Predator Prey Model in One Dimension

    Full text link
    The model of competition between densities of two different species, called predator and prey, is studied on a one dimensional periodic lattice, where each site can be in one of the four states say, empty, or occupied by a single predator, or occupied by a single prey, or by both. Along with the pairwise death of predators and growth of preys, we introduce an interaction where the predators can eat one of the neighboring prey and reproduce a new predator there instantly. The model shows a non-equilibrium phase transition into a unusual absorbing state where predators are absent and the lattice is fully occupied by preys. The critical exponents of the system are found to be different from that of the Directed Percolation universality class and they are robust against addition of explicit diffusion.Comment: 10 pages, 6 figures, to appear in JSTA

    Correlated Initial Conditions in Directed Percolation

    Full text link
    We investigate the influence of correlated initial conditions on the temporal evolution of a (d+1)-dimensional critical directed percolation process. Generating initial states with correlations ~r^(sigma-d) we observe that the density of active sites in Monte-Carlo simulations evolves as rho(t)~t^kappa. The exponent kappa depends continuously on sigma and varies in the range -beta/nu_{||}<=kappa<=eta. Our numerical results are confirmed by an exact field-theoretical renormalization group calculation.Comment: 10 pages, RevTeX, including 5 encapsulated postscript figure

    The kinetic spherical model in a magnetic field

    Full text link
    The long-time kinetics of the spherical model in an external magnetic field and below the equilibrium critical temperature is studied. The solution of the associated stochastic Langevin equation is reduced exactly to a single non-linear Volterra equation. For a sufficiently small external field, the kinetics of the magnetization-reversal transition from the metastable to the ground state is compared to the ageing behaviour of coarsening systems quenched into the low-temperature phase. For an oscillating magnetic field and below the critical temperature, we find evidence for the absence of the frequency-dependent dynamic phase transition, which was observed previously to occur in Ising-like systems.Comment: 26 pages, 12 figure

    Generalized Scaling for Models with Multiple Absorbing States

    Full text link
    At a continuous transition into a nonunique absorbing state, particle systems may exhibit nonuniversal critical behavior, in apparent violation of hyperscaling. We propose a generalized scaling theory for dynamic critical behavior at a transition into an absorbing state, which is capable of describing exponents which vary according to the initial configuration. The resulting hyperscaling relation is supported by simulations of two lattice models.Comment: Latex 9 page

    Universal scaling behavior of non-equilibrium phase transitions

    Full text link
    One of the most impressive features of continuous phase transitions is the concept of universality, that allows to group the great variety of different critical phenomena into a small number of universality classes. All systems belonging to a given universality class have the same critical exponents, and certain scaling functions become identical near the critical point. It is the aim of this work to demonstrate the usefulness of universal scaling functions for the analysis of non-equilibrium phase transitions. In order to limit the coverage of this article, we focus on a particular class of non-equilibrium critical phenomena, the so-called absorbing phase transitions. These phase transitions arise from a competition of opposing processes, usually creation and annihilation processes. The transition point separates an active phase and an absorbing phase in which the dynamics is frozen. A systematic analysis of universal scaling functions of absorbing phase transitions is presented, including static, dynamical, and finite-size scaling measurements. As a result a picture gallery of universal scaling functions is presented which allows to identify and to distinguish universality classes.Comment: review article, 160 pages, 60 figures include

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)

    Get PDF
    corecore