26 research outputs found

    Cumulant ratios and their scaling functions for Ising systems in strip geometries

    Full text link
    We calculate the fourth-order cumulant ratio (proposed by Binder) for the two-dimensional Ising model in a strip geometry L x oo. The Density Matrix Renormalization Group method enables us to consider typical open boundary conditions up to L=200. Universal scaling functions of the cumulant ratio are determined for strips with parallel as well as opposing surface fields.Comment: 4 pages, RevTex, one .eps figure; references added, format change

    Universal relations in the finite-size correction terms of two-dimensional Ising models

    Full text link
    Quite recently, Izmailian and Hu [Phys. Rev. Lett. 86, 5160 (2001)] studied the finite-size correction terms for the free energy per spin and the inverse correlation length of the critical two-dimensional Ising model. They obtained the universal amplitude ratio for the coefficients of two series. In this study we give a simple derivation of this universal relation; we do not use an explicit form of series expansion. Moreover, we show that the Izmailian and Hu's relation is reduced to a simple and exact relation between the free energy and the correlation length. This equation holds at any temperature and has the same form as the finite-size scaling.Comment: 4 pages, RevTeX, to appear in Phys. Rev. E, Rapid Communication

    Nonequilibrium wetting

    Full text link
    When a nonequilibrium growing interface in the presence of a wall is considered a nonequilibrium wetting transition may take place. This transition can be studied trough Langevin equations or discrete growth models. In the first case, the Kardar-Parisi-Zhang equation, which defines a very robust universality class for nonequilibrium moving interfaces, with a soft-wall potential is considered. While in the second, microscopic models, in the corresponding universality class, with evaporation and deposition of particles in the presence of hard-wall are studied. Equilibrium wetting is related to a particular case of the problem, it corresponds to the Edwards-Wilkinson equation with a potential in the continuum approach or to the fulfillment of detailed balance in the microscopic models. In this review we present the analytical and numerical methods used to investigate the problem and the very rich behavior that is observed with them.Comment: Review, 36 pages, 16 figure

    Diversity of Agaricales (Basidiomycota) in the Reserva BiolĂłgica Walter Egler, Amazonas, Brazil

    Get PDF
    A study of the order Agaricales Clements (Hymenomycetes, Basidiomycotina), occurring in the Reserva Biológica Walter Egler was carried out from December 2000 to June 2001. The area of study is situated at Road AM-010, Manaus-Itacoatiara, km 64, Latitude 02° 43' S and Longitude 59° 47' W, Rio Preto da Eva, in the State of Amazonas, with a total area of 709 ha of terra firme rain forest. The fungi collected were identified based on traditional methodology for identification of Agaricales. A total of 39 species were studied, distributed in 13 genera and six families: Polyporaceae: Pleurotus sp.; Hygrophoraceae: Hygrocybe cf. megistospora, Hygrocybe aff. miniceps, Hygrocybe occidentalis var. scarletina and eight indeterminate species of Hygrocybe; Tricholomataceae: Clitocybe sp., Hydropus sp.1 and Hydropus sp.2, Macrocystidia sp., Marasmiellus sp., Marasmius bellus, Marasmius haedinus var. haedinus, Marasmius cf. leoninus, Marasmius cf. mazatecus, Marasmius cf. ruber, Marasmius cf. setulosifolius, Marasmius tageticolor, Marasmius cf. variabiliceps var. variabiliceps, Marasmius sp.1, Marasmius sp.2, Marasmius sp.3 and Marasmius sp.4, Tricholoma sp.; Agaricaceae: Agaricus sp.1 and Agaricus sp.2, Lepiota sp., Cystoderma sp.; Entolomataceae: Entoloma cf. azureoviride, Entoloma cf. cystidiophorum, Entoloma strigosissima, Entoloma sp.; Russulaceae: Lactarius panuoides. Entoloma azureoviride, Hygrocybe miniceps, Lactarius panuoides, Marasmius cf. mazatecus, Marasmius cf. setulosifolius and Marasmius variabiliceps var. variabiliceps, apparently are here cited for the first time from Brazil. With exception of Marasmius tageticolor, all species are cited here for the first time as occurring in Egler Forest. The tables with the species occurrence, in accordance with the topographical gradient (sand bank, incline, plateau) and its respective habitat, are supplied.", 'enFoi realizado um estudo dos representantes da Ordem Agaricales Clements (Hymenomycetes, Basidiomycotina), ocorrentes na Reserva Biológica Walter Egler, situada na Estrada AM-010, Manaus-Itacoatiara, Km 64, Latitude 02° 43' S e Longitude 59° 47' W, Rio Preto da Eva, Amazonas. A área abrange 709 ha de floresta de terra firme primária. As coletas foram realizadas no período de dezembro de 2000 a junho de 2001 e seguiu-se a metodologia usual para identificação de Agaricales. Foram estudadas um total de 39 espécies, distribuídas em 13 gêneros e seis famíliasPolyporaceaePleurotus sp.; HygrophoraceaeHygrocybe cf. megistospora, Hygrocybe aff. miniceps, Hygrocybe occidentalis var. scarletina, e mais oito espécies de Hygrocybe indeterminadas; TricholomataceaeClitocybe sp., Hydropus sp.1 e Hydropus sp.2, Macrocystidia sp., Marasmiellus sp., Marasmius bellus, Marasmius haedinus var. haedinus,Marasmius cf. leoninus, Marasmius cf. mazatecus, Marasmius cf. ruber,Marasmius cf. setulosifolius, Marasmius tageticolor, Marasmius cf. variabiliceps var. variabiliceps, Marasmius sp.1, Marasmius sp.2, Marasmius sp.3 e Marasmius sp.4, Tricholoma sp.; AgaricaceaeAgaricus sp.1 e Agaricus sp.2, Lepiota sp., Cystoderma sp.; EntolomataceaeEntoloma cf. azureoviride, Entoloma cf. cystidiophorum, Entoloma strigosissima, Entoloma sp.; RussulaceaeLactarius panuoides. Destas, Entoloma azureoviride, Hygrocybe miniceps, Lactarius panuoides, Marasmius cf. mazatecus, Marasmius cf. setulosifolius e Marasmius variabiliceps var. variabiliceps, provavelmente, estão sendo aqui citadas pela primeira vez, para o Brasil. Com exceção de Marasmius tageticolor, as demais espécies são citadas pela primeira vez, para a Reserva Egler. São fornecidas tabelas com a ocorrência das espécies de acordo com o gradiente topográfico (baixio, vertente, platô) e seus respectivos habitats

    Mapping density, diversity and species-richness of the Amazon tree flora

    Get PDF
    Using 2.046 botanically-inventoried tree plots across the largest tropical forest on Earth, we mapped tree species-diversity and tree species-richness at 0.1-degree resolution, and investigated drivers for diversity and richness. Using only location, stratified by forest type, as predictor, our spatial model, to the best of our knowledge, provides the most accurate map of tree diversity in Amazonia to date, explaining approximately 70% of the tree diversity and species-richness. Large soil-forest combinations determine a significant percentage of the variation in tree species-richness and tree alpha-diversity in Amazonian forest-plots. We suggest that the size and fragmentation of these systems drive their large-scale diversity patterns and hence local diversity. A model not using location but cumulative water deficit, tree density, and temperature seasonality explains 47% of the tree species-richness in the terra-firme forest in Amazonia. Over large areas across Amazonia, residuals of this relationship are small and poorly spatially structured, suggesting that much of the residual variation may be local. The Guyana Shield area has consistently negative residuals, showing that this area has lower tree species-richness than expected by our models. We provide extensive plot meta-data, including tree density, tree alpha-diversity and tree species-richness results and gridded maps at 0.1-degree resolution

    Consistent patterns of common species across tropical tree communities

    Get PDF
    Trees structure the Earth’s most biodiverse ecosystem, tropical forests. The vast number of tree species presents a formidable challenge to understanding these forests, including their response to environmental change, as very little is known about most tropical tree species. A focus on the common species may circumvent this challenge. Here we investigate abundance patterns of common tree species using inventory data on 1,003,805 trees with trunk diameters of at least 10 cm across 1,568 locations1,2,3,4,5,6 in closed-canopy, structurally intact old-growth tropical forests in Africa, Amazonia and Southeast Asia. We estimate that 2.2%, 2.2% and 2.3% of species comprise 50% of the tropical trees in these regions, respectively. Extrapolating across all closed-canopy tropical forests, we estimate that just 1,053 species comprise half of Earth’s 800 billion tropical trees with trunk diameters of at least 10 cm. Despite differing biogeographic, climatic and anthropogenic histories7, we find notably consistent patterns of common species and species abundance distributions across the continents. This suggests that fundamental mechanisms of tree community assembly may apply to all tropical forests. Resampling analyses show that the most common species are likely to belong to a manageable list of known species, enabling targeted efforts to understand their ecology. Although they do not detract from the importance of rare species, our results open new opportunities to understand the world’s most diverse forests, including modelling their response to environmental change, by focusing on the common species that constitute the majority of their trees

    Tetrapterys styloptera

    No full text
    Angiosperm
    corecore