46 research outputs found

    Analysis of electron trajectories with two-color strong-field ionization

    Get PDF
    Two-color ionization of atoms with a strong 800-nm fundamental component and a weak 400-nm component with perpendicular polarization gives detailed insight into the ionization dynamics. When the delay between the two colors is varied on a subcycle scale, the slow-electron signal shows an oscillatory structure due to intracycle interference between different ionization times. Using a trajectory-based interference model, we extract the relative strength of the two contributing pathways. Ionization times can be read directly from the delay scan, and the times for the long trajectories agree well with the quantum-orbit model. The fast electrons arise predominantly from long rescattering trajectories. © 2015 American Physical SocietyDF

    Signatures of Molecular Orbital Structure in Lateral Electron Momentum Distributions from Strong-Field Ionization

    Get PDF
    Strong-field ionization of aligned diatomic and polyatomic molecules such as O2, N2, C2H4, and others in circularly polarized laser fields is investigated theoretically. By calculating the emission-angle-resolved lateral width of the momentum distribution perpendicular to the polarization plane, we show that nodal planes in molecular orbitals are directly imprinted on the angular dependence of the width. We demonstrate that orbital symmetries can be distinguished with the information obtained by observing the lateral width in addition to the angular distributions. © 2015 American Physical Society.DF

    Interference in above-threshold-ionization electron distributions from molecules

    Get PDF
    We present quantum-mechanical studies on above-threshold ionization of molecular ions in two and three dimensions. The momentum distributions show signatures of interfering emissions from the molecular centers. These structures deviate from a simple double-slit model that ignores the electron-ion interaction, but they are reproduced by an eikonal model. Such distortions of the interference pattern are partly responsible for the absence of clear interference patterns in the angle-integrated electron energy spectra. © 2011 American Physical Society.Studienstiftung des Deutschen VolkesDFGEU Marie Curie Initial Training Network/FASTQUAS

    Adiabaticity in the lateral electron-momentum distribution after strong-field ionization

    Get PDF
    By solving the time-dependent Schrödinger equation for atoms in short laser pulses of different polarizations, it is shown that in strong-field ionization without rescattering, the lateral width of the electron-momentum distribution corresponds adiabatically to the instantaneous laser field on a sub-laser-cycle time scale, as expected in pure tunneling ionization. In contrast to the distributions along the polarization direction, the width is affected little by depletion or Coulomb effects. © 2012 American Physical Society.DF

    Prediction of attosecond light pulses in the VUV range in a high-order-harmonic-generation regime

    Get PDF
    Attosecond light pulses within the vacuum ultraviolet (VUV) energy range are predicted by solving the time-dependent Schrödinger equation (TDSE) for a model neon atom in short laser pulses of different field polarization states. We compare high-order harmonic generation in linearly polarized laser pulses to the method of polarization gating and find attosecond pulses that approach the Fourier limit of 700 as given by an indium filter, spectrally centered at 15 eV. At such low energies, harmonic generation has low sensitivity to ellipticity, which enables the generation of elliptically polarized attosecond pulses. We also show that emission at the atomic transition energies is strongly damped by including intensity averaging. © 2013 American Physical Society.EPSRC/EP/I032517/1EU Marie Curie Initial Training Network/FASTQUASTDF

    Minimizing attosecond CEP jitter by carrier envelope phase tuning

    Get PDF
    Minimizing the CEP jitter of isolated attosecond pulses (IAP) will be important for future applications. This jitter is experimentally and theoretically investigated and can be minimized when the driving pulse is near its Fourier limit but with slightly negative chirp. Thus, understanding and characterization of the CEP jitter of IAPs is a first step towards exact control of the electric field of IAP pulses

    PIP5KIβ Selectively Modulates Apical Endocytosis in Polarized Renal Epithelial Cells

    Get PDF
    Localized synthesis of phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2] at clathrin coated pits (CCPs) is crucial for the recruitment of adaptors and other components of the internalization machinery, as well as for regulating actin dynamics during endocytosis. PtdIns(4,5)P2 is synthesized from phosphatidylinositol 4-phosphate by any of three phosphatidylinositol 5-kinase type I (PIP5KI) isoforms (α, β or γ). PIP5KIβ localizes almost exclusively to the apical surface in polarized mouse cortical collecting duct cells, whereas the other isoforms have a less polarized membrane distribution. We therefore investigated the role of PIP5KI isoforms in endocytosis at the apical and basolateral domains. Endocytosis at the apical surface is known to occur more slowly than at the basolateral surface. Apical endocytosis was selectively stimulated by overexpression of PIP5KIβ whereas the other isoforms had no effect on either apical or basolateral internalization. We found no difference in the affinity for PtdIns(4,5)P2-containing liposomes of the PtdIns(4,5)P2 binding domains of epsin and Dab2, consistent with a generic effect of elevated PtdIns(4,5)P2 on apical endocytosis. Additionally, using apical total internal reflection fluorescence imaging and electron microscopy we found that cells overexpressing PIP5KIβ have fewer apical CCPs but more internalized coated structures than control cells, consistent with enhanced maturation of apical CCPs. Together, our results suggest that synthesis of PtdIns(4,5)P2 mediated by PIP5KIβ is rate limiting for apical but not basolateral endocytosis in polarized kidney cells. PtdIns(4,5)P2 may be required to overcome specific structural constraints that limit the efficiency of apical endocytosis. © 2013 Szalinski et al
    corecore