
RAPID COMMUNICATIONS

PHYSICAL REVIEW A 83, 051401(R) (2011)

Interference in above-threshold-ionization electron distributions from molecules
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We present quantum-mechanical studies on above-threshold ionization of molecular ions in two and three
dimensions. The momentum distributions show signatures of interfering emissions from the molecular centers.
These structures deviate from a simple double-slit model that ignores the electron-ion interaction, but they are
reproduced by an eikonal model. Such distortions of the interference pattern are partly responsible for the absence
of clear interference patterns in the angle-integrated electron energy spectra.
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Above-threshold ionization (ATI) is one of the most
fundamental phenomena occurring in the interaction of strong
laser fields with atoms and molecules [1,2]. Briefly, the effect
is that an electron (or several electrons [3,4]) absorbs more
photons than needed to overcome the ionization threshold,
leading to ATI peaks separated by the photon energy in the
photoelectron kinetic-energy distribution. The ionization may
proceed directly or indirectly via rescattering of the electron
from the nuclei. For an extensive discussion of the theory of
ATI, see the excellent review article by Becker et al. [5].

The first proposal toward molecular imaging based on
ATI was made by Zuo, Bandrauk, and Corkum [6]. They
determined photoelectron momentum distributions originating
from multiphoton ionization of an H2

+ molecular ion with the
nuclei fixed at different internuclear distances. Using a two-
dimensional model of H2

+ aligned parallel or perpendicular to
the laser field, they found not only the characteristic ATI rings
separated by the photon energy; additionally, they showed
that under certain conditions regular patterns arise which are
superimposed on the ATI rings. These features stem from
the emission of electrons from different centers, leading to
interferences in a similar way as they arise in a diffraction
experiment.

In recent years, laser-induced diffraction in ATI has been
discussed extensively [7–14]. These studies have mostly
focused on the rescattered electrons for which the exis-
tence of diffraction patterns has been clearly demonstrated.
The existence of interference in direct ionization is a separate
question, which has been under debate recently. Although the
calculated distributions by Zuo et al. [6] were explained in
terms of direct interference, it must be noted that only a few ATI
rings were investigated and the interference pattern was not
very clear for the parallel configuration. Later, destructive two-
center interference was made responsible for the suppressed
ionization of O2 molecules as compared to atoms with a
similar ionization potential [15,16]. The interference effect has
been confirmed in measurements of the molecular and atomic
ATI spectra [17]. Measured angular distributions from Ar2

molecules differ significantly from distributions from Ar atoms
[18]. However, the difference could not be fully explained by
an interference model. Finally, the numerical results by Vanne
and Saenz on H2 did not show the signature of two-center
interference in the angle-integrated ATI spectrum [19]. This

finding is not only in disagreement with the interference picture
of [15–17], but raises also the question why the interferences
found in the momentum distributions [6,18] do not appear in
the ATI spectrum.

In the present work, we use two-dimensional and three-
dimensional simulations for H2

+ to show that the electron
momentum distributions exhibit clear interference patterns.
They deviate from simple double-slit patterns, but they are
reproduced by an eikonal model that takes the electron-ion
interaction into account. The calculated energy spectra, on the
other hand, do not show a clear interference pattern, confirming
the previous result for H2 [19]. We show that the electron-ion
interaction counteracts the visibility of interferences in the ATI
spectra.

The importance of the electron-ion interaction has been
recognized before and its effect has been successfully incor-
porated in the theory of laser-induced processes (see, e.g.,
the use of approximate Coulomb continuum functions in the
ionization of molecules [20,21] or the eikonal model in strong-
field ionization [22]). In the present work, we employ a simple
version of the eikonal model to provide an easy interpretation
of the two-dimensional (2D) and three-dimensional (3D)
numerical momentum distributions.

We solve the time-dependent Schrödinger equation (TDSE)
for one electron (atomic units are used)

i
∂

∂t
ψ(r,t) = [Ĥ0 + Ŵ (t)]ψ(r,t), (1)

with the system Hamiltonian Ĥ0 = p̂2

2 + VN (r), where p̂
denotes the electron momentum operator and VN is the
potential created by N fixed nuclei at positions Rn in the
(x,y) plane. We use the soft-core potential

VN (r) = −
N∑

n=1

1√
(1 + |r − Rn|2)

. (2)

The dipole interaction with a linearly polarized laser field is
included in the velocity gauge as

Ŵ (t) = p̂A(t) = −p̂ε

∫ t

0
dt ′ E0 f (t ′) sin (ωt ′), (3)
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with polarization vector ε, field strength E0, frequency ω,
and pulse envelope f (t). We employ a laser wavelength of
532 nm (photon energy 2.33 eV) and a field amplitude of E0 =
0.06 a.u., corresponding to an intensity of 0.126 PW/cm2. The
field envelope is turned on and off linearly over two optical
cycles T = 2π/ω and is kept constant at f (t) = 1 over 12
cycles. The simulation is run for five additional cycles without
field to collect slow photoelectrons. The TDSE is solved nu-
merically using the split-operator technique [23] in 2D and 3D.
Initially, the system is in its ground state which is calculated
via imaginary-time propagation [24]. The 2D numerical grid
size is 1600 a.u. along each axis with a spacing of 0.39 a.u.
(4096 grid points). The 3D grid gize is 800 a.u. with a spacing
of 1.6 a.u. (512 grid points). Despite the coarse 3D spacing,
the comparison of the results with the numerically accurate
2D results shows agreement, indicating that the results are
convergent with respect to the numerical parameters. The laser
field is aligned along the y axis of the coordinate system. We
divide the grid into an interaction (IA) and an asymptotic
(AS) region. In the AS region the electron is treated as a
free particle interacting with the external laser field [25,26].
The 2D wave function is decomposed into an inner and
outer part by multiplication with a window function w2D(r) =
w(x)w(y), where w(x) = exp[−β (|x|−rc)2 θ (|x|−rc)], with
rc = 200 a.u., β = 10−4 a.u., and the Heaviside function θ .
Similarly, in the 3D case, we use w3D(r) = w(x)w(y)w(z). The
interaction part ψIA(r,t) of the wave function is propagated
with the complete Hamiltonian and the time evolution of
the asymptotic part is carried out in momentum space with
the Hamiltonian of the free electron in the laser field. The
windowing is performed at each timestep tn and the obtained
new fractions of the asymptotic wave function are added
coherently to the momentum-space function ψ̃AS(p,tn).

The photoelectron momentum distribution is calculated at
the final time tmax = 21T ≈ 37 fs as

σAS(p) = |ψ̃AS(p,tmax)|2, (4)

whereas the time-dependent momentum distribution for elec-
trons still located in the interaction region is

σIA(v,t) = |ψ̃IA(v − A(t),t)|2, (5)

with the kinetic momentum v = p + A(t) and the momentum-
space wave function ψ̃IA.

For better interpretation of the numerical results, we
consider two models for describing the interference between
emissions from different centers. Ignoring the effect of the
laser field on the electron motion, we calculate the phases of
the electron paths starting with the same velocity from the
N centers. The coherent summation of these N contributions
leads to interference minima and maxima depending on the
relative phases. The paths are parallel straight lines starting
at the centers with an electron velocity corresponding to
the desired final electron momentum and leading toward
infinity. In the double-slit model, the electron-ion interaction
is neglected. For a diatomic system with internuclear vector
R, this leads to the usual double-slit interference

σAS ∼ cos2 (pR/2). (6)

Second, we consider an eikonal model taking the electron-ion
interaction into account [27]. While the electron is still
assumed to move on a straight line, the instantaneous velocity
u depends on the position as u(r) = √

2[E − VN (r)] due to
energy conservation with E = p2/2 being the total energy
for the final momentum p. The phase ϕn acquired along
the path starting from the nucleus at Rn is calculated as an
action integral along the path, that is, ϕn = ∫ rn

Rn
u(r) ds, with

endpoints rn far away from the nuclei. The endpoints of the
different paths must lie on the same plane-wave front, which
is perpendicular to the velocity. The momentum p is scanned
with a spacing of 1.6 × 10−3 a.u. in each direction. A coherent
summation over the different paths yields

σAS ∼
∣∣∣∣∣
∑

n

eiϕn

∣∣∣∣∣
2

. (7)

In a heteronuclear or polyatomic molecule, the initial wave
function may be distributed unequally over different centers.
In this case, each contribution is weighted by the value of the
wave function at the corresponding core

σAS ∼
∣∣∣∣∣
∑

n

ψIA(Rn,0)eiϕn

∣∣∣∣∣
2

. (8)

In Fig. 1, we show momentum distributions obtained
from a 2D TDSE calculation for H2

+ at an internuclear
distance of R = 20 a.u. We first discuss the dynamics of
the momentum-space wave function in the interaction region,
Figs. 1(a) through (e). At all times a clear interference pattern
is found, which has approximately the form of nodal lines
along the py direction. This structure appears clearly already
in the initial ground state at t = 0. The reason is that the ground
state ψ0 is well described by a linear combination of atomic
orbitals φ

ψ0(r) ∼ φ(r + R/2) + φ(r − R/2), (9)

with the momentum-space wave function ψ̃0(p) ∼ φ̃(p)
cos(pR/2). This yields the same interference pattern as
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FIG. 1. (Color online) Momentum distributions for H2
+ at the

internuclear distances R = 20 a.u. aligned perpendicular to the laser
field (logarithmic color scale). (a–e) Time-dependent distributions in
the interaction region at different times t , as indicated. The laser field
is turned off at t = 16T . (f) Asymptotic photoelectron distribution.
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FIG. 2. (Color online) Asymptotic momentum distributions σAS

for H2
+ at R = 20 a.u. with (a) perpendicular alignment and

(b) parallel alignment of the molecular axis to the laser field. The
red lines indicate the minima predicted by the eikonal model, Eq. (7).

expected from the double-slit model for the ionizing parts
of the wave function. For the arrangement of Fig. 1 with two
nuclei located at R1 = (R

2 ,0) and R2 = (−R
2 ,0), destructive

interference is predicted at px = (2n + 1)π/R with n =
0,1, . . .. For R = 20 a.u. this yields values of px = 0.157 a.u.,
0.471 a.u. for n = 0, 1 in perfect agreement with the numerical
results in Fig. 1. A closer inspection of Fig. 1 shows
that the ground state is superimposed by the wavepackets
corresponding to ionization. The latter follow the oscillations
of the vector potential along the polarization axis and show
the expected ATI rings defined by p2

y/2 + p2
x/2 = E with

total final energy E. While the initial state shows straight
nodal lines, the ionizing wavepackets exhibit a bent diffraction
pattern, see Fig. 1(c). This becomes more apparent in the
asymptotic distribution, Fig. 1(f), which contains no traces of
the bound states and only displays ATI rings modulated with
interference patterns. Clearly, the simple double-slit formula
Eq. (6) cannot reproduce these features correctly. Using the
eikonal model we are able to describe the pattern more
accurately. In Fig. 2, we show results for both perpendicular
and parallel alignments of H2

+ relative to the field. The red
lines show the zeros of the surface obtained from Eq. (7).
These lines reproduce the minima in the ATI rings save a
few exceptions such as the innermost ring in perpendicular
alignment. It is remarkable that the numerical interference
pattern is reproduced by a model that does not depend on the
laser field. The agreement may degrade for higher intensity or
longer wavelength.

Next, we turn to the case of a linear arrangement of three
nuclei with a distance of R = 10 a.u. between adjacent nuclei.
The momentum distributions are displayed in Fig. 3. In the
eikonal model, we use the weighted sum according to Eq. (8).
In contrast to the two-center case, the interference is never fully
destructive. Nevertheless, the contour lines in Fig. 3 clearly
show trenches of suppressed yield. Similar to the two-center
case, these trenches lie along curves that are bent inward near
the origin, but for high values of p they approach the straight
lines predicted by Eq. (6). The numerical interference pattern
agrees well with the model.

Vanne and Saenz have recently investigated the question
whether interference minima appear in the angle-integrated
ATI spectra [19]. Under the assumption that the electrons
are predominantly ejected along the laser polarization axis,
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FIG. 3. (Color online) Asymptotic momentum distributions σAS

for H3
2+. (a) Perpendicular alignment with the nuclei positioned at

R1 = (−10,0), R2 = (0,0), and R3 = (10,0). (b) Parallel alignment
with R1 = (0, − 10), R2 = (0,0), and R3 = (0,10). The red straight,
green dashed, and blue dotted lines are contour lines at the values 0.96,
0.93, and 0.92, respectively, of the surface given by the three-center
eikonal model, Eq. (8), which yields values between 0.9 and 1.1.

one expects that the interference minima discussed above
persist after integration over the angle. In the double-slit model
for H2

+, this leads to minima at En = π2(2n + 1)2/(2R2) in
the ratio between the spectra for parallel and perpendicular
alignments. This behavior is also predicted by the molecular
strong-field approximation in the velocity gauge [19]. How-
ever, the TDSE results for H2 at R = 3 a.u. did not confirm this
interference pattern [19]. In Fig. 4 we show the ATI spectra for
parallel and perpendicular alignments of 2D H2

+ as well as
the ratio between the two spectra. Although some modulations
of the ratio are seen in the low-energy region, there is no
resemblance with the interference pattern predicted by the
double-slit model. From Fig. 2, we understand that there are
two reasons why the interference pattern in the momentum
distribution does not survive the integration over angle.
First, the momentum distributions are not focused enough
along the polarization axis to allow a unique correspondence
between electron energy and momentum component along
the molecular axis. Second, the nodal lines of the interference
patterns are distorted by the electron-ion interaction. The
curvature is such that it tends to wash out the angle-integrated
interference pattern.
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FIG. 4. (Color online) Energy spectra obtained from Fig. 2 by
integration over emission angle. (a) Spectrum for perpendicular
alignment. (b) Spectrum for parallel alignment. (c) Ratio of parallel
to perpendicular spectrums. The red lines are the positions of the
minima predicted by En = π 2(2n + 1)2/(2R2).
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FIG. 5. (Color online) Asymptotic momentum distributions σAS

for H2
+ perpendicular to the laser field as in Fig. 2, obtained as 2D

cuts from the 3D calculation (logarithmic color scale). Also shown is
the molecule-field geometry.

We finally turn to a 3D calculation to investigate if the
interference patterns persist if the full dimensionality is
taken into account. Figure 5 shows 2D cuts through the 3D
momentum distributions. The molecular axis is along the x axis

[i.e., perpendicular to the laser field (y axis)], as is illustrated
in the figure. Interference patterns are visible in the x-y and
x-z planes The predictions made by the eikonal model (red
lines in Fig. 5) are the same as in Fig. 2 and give an adequate
description of the interference pattern. The slight deviations
for momenta with px > 0.5 a.u. may be related to the low
spatial resolution used in the 3D calculation. The results show
that, for the present arrangement, the 2D treatment is a good
approximation to the complete 3D calculation when studying
only the dynamics in the x-y plane.

To summarize, the TDSE for 2D and 3D molecular ions
at large internuclear distances has been solved numerically to
investigate interference in multiphoton ionization. The ATI
rings are modulated with interference patterns due to the
two- or multicenter character of the molecular ions. The
development of the momentum distributions in time shows
that the initial state has an interference pattern of straight lines
whereas the photoelectron momentum distributions exhibit
a distorted pattern. Using an eikonal model that takes the
electron-ion interaction into account, we can reproduce these
structures in both 2D and 3D calculations. The distortion is
such that the interference pattern is washed out when the
momentum distribution is integrated over angle. This is partly
responsible for the absence of a clear interference pattern in
the ATI spectrum.
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331 (1991).

[3] J. S. Parker, L. R. Moore, K. J. Meharg, D. Dundas, and K. T.
Taylor, J. Phys. B 34, L69 (2001).

[4] M. Lein, E. K. U. Gross, and V. Engel, Phys. Rev. A 64, 023406
(2001).

[5] W. Becker, F. Grasbon, R. Kopold, D. B. Milošević, G. G. Paulus,
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J. Ullrich, Phys. Rev. A 81, 033411 (2010).
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