CORE
CO
nnecting
RE
positories
Services
Services overview
Explore all CORE services
Access to raw data
API
Dataset
FastSync
Content discovery
Recommender
Discovery
OAI identifiers
OAI Resolver
Managing content
Dashboard
Bespoke contracts
Consultancy services
Support us
Support us
Membership
Sponsorship
Research partnership
About
About
About us
Our mission
Team
Blog
FAQs
Contact us
Community governance
Governance
Advisory Board
Board of supporters
Research network
Innovations
Our research
Labs
research
Prediction of attosecond light pulses in the VUV range in a high-order-harmonic-generation regime
Authors
Davide Fabris
Jost Henkel
+5 more
Peter L. Knight
Manfred Lein
Jonathan P. Marangos
John W.G. Tisch
Tobias Witting
Publication date
1 January 2013
Publisher
College Park, MD : American Physical Society
Doi
Cite
Abstract
Attosecond light pulses within the vacuum ultraviolet (VUV) energy range are predicted by solving the time-dependent Schrödinger equation (TDSE) for a model neon atom in short laser pulses of different field polarization states. We compare high-order harmonic generation in linearly polarized laser pulses to the method of polarization gating and find attosecond pulses that approach the Fourier limit of 700 as given by an indium filter, spectrally centered at 15 eV. At such low energies, harmonic generation has low sensitivity to ellipticity, which enables the generation of elliptically polarized attosecond pulses. We also show that emission at the atomic transition energies is strongly damped by including intensity averaging. © 2013 American Physical Society.EPSRC/EP/I032517/1EU Marie Curie Initial Training Network/FASTQUASTDF
Similar works
Full text
Open in the Core reader
Download PDF
Available Versions
Crossref
See this paper in CORE
Go to the repository landing page
Download from data provider
info:doi/10.1103%2Fphysreva.87...
Last time updated on 05/06/2019
Institutional Repository of Leibniz Universität Hannover
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:repo.uni-hannover.de:12345...
Last time updated on 28/06/2025