172 research outputs found

    Synthesis, structural studies, and redox chemistry of bimetallic [Mn(CO)₃] and [Re(CO)₃] complexes

    Get PDF
    Manganese ([Mn(CO)₃]) and rhenium tricarbonyl ([Re(CO)₃]) complexes represent a workhorse family of compounds with applications in a variety of fields. Here, the coordination, structural, and electrochemical properties of a family of mono- and bimetallic [Mn(CO)₃] and [Re(CO)₃] complexes are explored. In particular, a novel heterobimetallic complex featuring both [Mn(CO)₃] and [Re(CO)₃] units supported by 2,2′-bipyrimidine (bpm) has been synthesized, structurally characterized, and compared to the analogous monomeric and homobimetallic complexes. To enable a comprehensive structural analysis for the series of complexes, we have carried out new single crystal X-ray diffraction studies of seven compounds: Re(CO)₃Cl(bpm), anti-[{Re(CO₃)Cl}₂(bpm)], Mn(CO)₃Br(bpz) (bpz = 2,2′-bipyrazine), Mn(CO)₃Br(bpm), syn- and anti-[{Mn(CO3)Br}₂(bpm)], and syn-[Mn(CO₃)Br(bpm)Re(CO)₃Br]. Electrochemical studies reveal that the bimetallic complexes are reduced at much more positive potentials (ΔE ≥ 380 mV) compared to their monometallic analogues. This redox behavior is consistent with introduction of the second tricarbonyl unit which inductively withdraws electron density from the bridging, redox-active bpm ligand, resulting in more positive reduction potentials. [Re(CO₃)Cl]₂(bpm) was reduced with cobaltocene; the electron paramagnetic resonance spectrum of the product exhibits an isotropic signal (near g = 2) characteristic of a ligand-centered bpm radical. Our findings highlight the facile synthesis as well as the structural characteristics and unique electrochemical behavior of this family of complexes

    Intracranial stereotactic radiation therapy with a jawless ring gantry linear accelerator equipped with new dual layer multileaf collimator

    Get PDF
    Purpose: To test the feasibility of a simplified, robust, workflow for intracranial stereotactic radiation therapy (SRT) using a ring gantry linear accelerator (RGLA) equipped with a dual-layer stacked, staggered, and interdigitating multileaf collimator. Materials and Methods: Twenty recent clinical SRT cases treated using a radiosurgery c-arm linear accelerator were anonymized. From these data sets, a new planning workflow was developed and used to replan these cases, which then were compared to their clinical counterparts. Population-based dose-volume histograms were analyzed for target coverage and sparing of healthy brain. All plans underwent plan review and quality assurance and were delivered on an end-to-end verification phantom using image guidance to simulate treatment. Results: The RGLA plans were able to meet departmental standards for target coverage and organ-at-risk sparing and showed plan quality similar to the clinical plans. RGLA plans showed increases in the 50% isodose in the axial plane but decreases in the sagittal and coronal planes. There were no statistically significant differences in the homogeneity index or number of monitor units between the 2 systems. There were statistically significant increases in conformity and gradient indices, with median values of 1.09 versus 1.11 and 2.82 versus 3.13, respectively, for the c-arm versus RGLA plans. These differences were not believed to be clinically significant because they met clinical goals. The population-based dose-volume histograms showed target coverage and organ-at-risk sparing similar to that of the clinical plans. All plans were able to meet the departmental quality assurance requirements and were delivered under image guidance on an end-to-end phantom with measurements agreeing within 3% of the expected value. RGLA plans showed a median reduction in delivery time of ≈50%. Conclusions: This work describes a simplified and efficient workflow that could reduce treatment times and expand access to SRT to centers using an RGLA

    In Vivo Time- Resolved Microtomography Reveals the Mechanics of the Blowfly Flight Motor

    Get PDF
    Dipteran flies are amongst the smallest and most agile of flying animals. Their wings are driven indirectly by large power muscles, which cause cyclical deformations of the thorax that are amplified through the intricate wing hinge. Asymmetric flight manoeuvres are controlled by 13 pairs of steering muscles acting directly on the wing articulations. Collectively the steering muscles account for <3% of total flight muscle mass, raising the question of how they can modulate the vastly greater output of the power muscles during manoeuvres. Here we present the results of a synchrotron-based study performing micrometre-resolution, time-resolved microtomography on the 145 Hz wingbeat of blowflies. These data represent the first four-dimensional visualizations of an organism's internal movements on sub-millisecond and micrometre scales. This technique allows us to visualize and measure the three-dimensional movements of five of the largest steering muscles, and to place these in the context of the deforming thoracic mechanism that the muscles actuate. Our visualizations show that the steering muscles operate through a diverse range of nonlinear mechanisms, revealing several unexpected features that could not have been identified using any other technique. The tendons of some steering muscles buckle on every wingbeat to accommodate high amplitude movements of the wing hinge. Other steering muscles absorb kinetic energy from an oscillating control linkage, which rotates at low wingbeat amplitude but translates at high wingbeat amplitude. Kinetic energy is distributed differently in these two modes of oscillation, which may play a role in asymmetric power management during flight control. Structural flexibility is known to be important to the aerodynamic efficiency of insect wings, and to the function of their indirect power muscles. We show that it is integral also to the operation of the steering muscles, and so to the functional flexibility of the insect flight motor

    Zebrafish type I collagen mutants faithfully recapitulate human type I collagenopathies

    Get PDF
    The type I collagenopathies are a group of heterogeneous connective tissue disorders, that are caused by mutations in the genes encoding type I collagen and include specific forms of osteogenesis imperfecta (OI) and the Ehlers-Danlos syndrome (EDS). These disorders present with a broad disease spectrum and large clinical variability of which the underlying genetic basis is still poorly understood. In this study, we systematically analyzed skeletal phenotypes in a large set of zebrafish, with diverse mutations in the genes encoding type I collagen, representing different genetic forms of human OI, and a zebrafish model resembling human EDS, which harbors a number of soft connective tissues defects, typical of EDS. Furthermore, we provide insight into how zebrafish and human type I collagen are compositionally and functionally related, which is relevant in the interpretation of human type I collagen-related disease models. Our studies reveal a high degree of intergenotype variability in phenotypic expressivity that closely correlates with associated OI severity. Furthermore, we demonstrate the potential for select mutations to give rise to phenotypic variability, mirroring the clinical variability associated with human disease pathology. Therefore, our work suggests the future potential for zebrafish to aid in identifying unknown genetic modifiers and mechanisms underlying the phenotypic variability in OI and related disorders. This will improve diagnostic strategies and enable the discovery of new targetable pathways for pharmacological intervention

    The effects of tea extracts on proinflammatory signaling

    Get PDF
    BACKGROUND: Skin toxicity is a common side effect of radiotherapy for solid tumors. Its management can cause treatment gaps and thus can impair cancer treatment. At present, in many countries no standard recommendation for treatment of skin during radiotherapy exists. In this study, we explored the effect of topically-applied tea extracts on the duration of radiation-induced skin toxicity. We investigated the underlying molecular mechanisms and compared effects of tea extracts with the effects of epigallocatechin-gallate, the proposed most-active moiety of green tea. METHODS: Data from 60 patients with cancer of the head and neck or pelvic region topically treated with green or black tea extracts were analyzed retrospectively. Tea extracts were compared for their ability to modulate IL-1β, IL-6, IL-8, TNFα and PGE(2 )release from human monocytes. Effects of tea extracts on 26S proteasome function were assessed. NF-κB activity was monitored by EMSAs. Viability and radiation response of macrophages after exposure to tea extracts was measured by MTT assays. RESULTS: Tea extracts supported the restitution of skin integrity. Tea extracts inhibited proteasome function and suppressed cytokine release. NF-κB activity was altered by tea extracts in a complex, caspase-dependent manner, which differed from the effects of epigallocatechin-gallate. Additionally, both tea extracts, as well as epigallocatechin-gallate, slightly protected macrophages from ionizing radiation CONCLUSION: Tea extracts are an efficient, broadly available treatment option for patients suffering from acute radiation-induced skin toxicity. The molecular mechanisms underlying the beneficial effects are complex, and most likely not exclusively dependent on effects of tea polyphenols such as epigallocatechin-gallate
    • …
    corecore