96 research outputs found

    The risks of adverse events with venlafaxine and mirtazapine versus 'active placebo', placebo, or no intervention for adults with major depressive disorder: a protocol for two separate systematic reviews with meta-analysis and Trial Sequential Analysis

    Get PDF
    BACKGROUND: Major depressive disorder causes a great burden on patients and societies. Venlafaxine and mirtazapine are commonly prescribed as second-line treatment for patients with major depressive disorder worldwide. Previous systematic reviews have concluded that venlafaxine and mirtazapine reduce depressive symptoms, but the effects seem small and may not be important to the average patient. Moreover, previous reviews have not systematically assessed the occurrence of adverse events. Therefore, we aim to investigate the risks of adverse events with venlafaxine or mirtazapine versus 'active placebo', placebo, or no intervention for adults with major depressive disorder in two separate systematic reviews. METHODS: This is a protocol for two systematic reviews with meta-analysis and Trial Sequential Analysis. The assessments of the effects of venlafaxine or mirtazapine will be reported in two separate reviews. The protocol is reported as recommended by Preferred Reporting Items for Systematic Reviews and Meta-Analysis Protocols, risk of bias will be assessed with the Cochrane risk-of-bias tool version 2, clinical significance will be assessed using our eight-step procedure, and the certainty of the evidence will be assessed with the Grading of Recommendations Assessment, Development and Evaluation approach. We will search for published and unpublished trials in major medical databases and trial registers. Two review authors will independently screen the results from the literature searches, extract data, and assess risk of bias. We will include published or unpublished randomised clinical trial comparing venlafaxine or mirtazapine with 'active placebo', placebo, or no intervention for adults with major depressive disorder. The primary outcomes will be suicides or suicide attempts, serious adverse events, and non-serious adverse events. Exploratory outcomes will include depressive symptoms, quality of life, and individual adverse events. If feasible, we will assess the intervention effects using random-effects and fixed-effect meta-analyses. DISCUSSION: Venlafaxine and mirtazapine are frequently used as second-line treatment of major depressive disorder worldwide. There is a need for a thorough systematic review to provide the necessary background for weighing the benefits against the harms. This review will ultimately inform best practice in the treatment of major depressive disorder. SYSTEMATIC REVIEW REGISTRATION: PROSPERO CRD42022315395

    Occupational functioning and work impairment in association with personality disorder trait-scores

    Full text link
    PURPOSE: According to the DSM, functional impairment is a main criterion for the general definition of personality disorders (PDs), but research suggests that some PDs might not be related to impaired functioning. Occupational functioning has rarely been examined in all ten DSM PDs. METHODS: We analysed 511 adults aged 20-41 years from the general population of the canton of Zurich, Switzerland, using data from the Epidemiology Survey of the Zurich Programme for Sustainable Development of Mental Health Services. All PDs were assessed with dimensional trait-scores and associations with indicators of occupational functioning were analysed with generalised linear models. RESULTS: Each PD revealed at least a weak association with some form of occupational impairment. Most PDs, especially from cluster A and B, were significantly related to occupational dysfunction, in particular low education level, conflicts in the workplace, dismissal or demotion, and unemployment. In contrast, obsessive-compulsive PD was mostly unrelated to occupational functioning. A total personality pathology dose-response relationship was observed for low education level, conflicts in the workplace, dismissal or demotion, and unemployment. CONCLUSIONS: Impairment in occupational functioning is an important aspect particularly of cluster A and B PDs. Assuming that functional impairment is a predictor of illness severity, we advocate that clinicians should carefully explore indicators of occupational functioning in the diagnosis, prognosis, and treatment of PDs. The findings discussed herein have implications for general treatment, interventions in the work environment, or re-integration of patients into the labour force

    Caspase-8 binding to cardiolipin in giant unilamellar vesicles provides a functional docking platform for bid

    Get PDF
    Caspase-8 is involved in death receptor-mediated apoptosis in type II cells, the proapoptotic programme of which is triggered by truncated Bid. Indeed, caspase-8 and Bid are the known intermediates of this signalling pathway. Cardiolipin has been shown to provide an anchor and an essential activating platform for caspase-8 at the mitochondrial membrane surface. Destabilisation of this platform alters receptor-mediated apoptosis in diseases such as Barth Syndrome, which is characterised by the presence of immature cardiolipin which does not allow caspase-8 binding. We used a simplified in vitro system that mimics contact sites and/or cardiolipin-enriched microdomains at the outer mitochondrial surface in which the platform consisting of caspase-8, Bid and cardiolipin was reconstituted in giant unilamellar vesicles. We analysed these vesicles by flow cytometry and confirm previous results that demonstrate the requirement for intact mature cardiolipin for caspase-8 activation and Bid binding and cleavage. We also used confocal microscopy to visualise the rupture of the vesicles and their revesiculation at smaller sizes due to alteration of the curvature following caspase-8 and Bid binding. Biophysical approaches, including Laurdan fluorescence and rupture/tension measurements, were used to determine the ability of these three components (cardiolipin, caspase-8 and Bid) to fulfil the minimal requirements for the formation and function of the platform at the mitochondrial membrane. Our results shed light on the active functional role of cardiolipin, bridging the gap between death receptors and mitochondria

    Validation of pharmacodynamic assays to evaluate the clinical efficacy of an antisense compound (AEG 35156) targeted to the X-linked inhibitor of apoptosis protein XIAP

    Get PDF
    The inhibitor of apoptosis protein, XIAP, is frequently overexpressed in chemoresistant human tumours. An antisense oligonucleotide (AEG 35156/GEM 640) that targets XIAP has recently entered phase I trials in the UK. Method validation data are presented on three pharmacodynamic assays that will be utilised during this trial. Quantitative RT-PCR was based on a Taqman assay and was confirmed to be specific for XIAP. Assay linearity extended over four orders of magnitude. MDA-MB-231/U6-E1 cells and clone X-G4 stably expressing an RNAi vector against XIAP were chosen as high and low XIAP expression quality controls (QCs). Within-day and between-day coefficients of variation (CVs) in precision for cycle threshold (CT) and delta CT values (employing GAPDH and beta 2 microglobulin as housekeepers) were always less than 10%. A Western blotting technique was validated using a GST–XIAP fusion protein as a standard and HeLa cells and SF268 (human glioblastoma) cells as high and low XIAP expression QCs. Specificity of the final choice of antibody for XIAP was evaluated by analysing a panel of cell lines including clone X-G4. The assay was linear over a 29-fold range of protein concentration and between-day precision was 29% for the low QC and 23% for the high QC when normalised to GAPDH. XIAP protein was also shown to be stable at −80°C for at least 60 days. M30-Apoptosense™ plasma Elisa detects a caspase-cleaved fragment of cytokeratin 18 (CK18), believed to be a surrogate marker for tumour cell apoptosis. Generation of an independent QC was achieved through the treatment of X-G4 cells with staurosporine and collection of media. Measurements on assay precision and kit-to-kit QC were always less than 10%. The M30 antigen (CK18-Asp396) was stable for 3 months at −80°C, while at 37°C it had a half-life of 80–100 h in healthy volunteer plasma. Results from the phase I trial are eagerly awaited

    Individual caspase-10 isoforms play distinct and opposing roles in the initiation of death receptor-mediated tumour cell apoptosis

    Get PDF
    The cysteine protease caspase-8 is an essential executioner of the death receptor (DR) apoptotic pathway. The physiological function of its homologue caspase-10 remains poorly understood, and the ability of caspase-10 to substitute for caspase-8 in the DR apoptotic pathway is still controversial. Here, we analysed the particular contribution of caspase-10 isoforms to DR-mediated apoptosis in neuroblastoma (NB) cells characterised by their resistance to DR signalling. Silencing of caspase-8 in tumour necrosis factor-related apoptosis-inducing ligand (TRAIL)-sensitive NB cells resulted in complete resistance to TRAIL, which could be reverted by overexpression of caspase-10A or -10D. Overexpression experiments in various caspase-8-expressing tumour cells also demonstrated that caspase-10A and -10D isoforms strongly increased TRAIL and FasL sensitivity, whereas caspase-10B or -10G had no effect or were weakly anti-apoptotic. Further investigations revealed that the unique C-terminal end of caspase-10B was responsible for its degradation by the ubiquitin–proteasome pathway and for its lack of pro-apoptotic activity compared with caspase-10A and -10D. These data highlight in several tumour cell types, a differential pro- or anti-apoptotic role for the distinct caspase-10 isoforms in DR signalling, which may be relevant for fine tuning of apoptosis initiation

    The Mitochondrial Genome Is a “Genetic Sanctuary” during the Oncogenic Process

    Get PDF
    Since Otto Warburg linked mitochondrial physiology and oncogenesis in the 1930s, a number of studies have focused on the analysis of the genetic basis for the presence of aerobic glycolysis in cancer cells. However, little or no evidence exists today to indicate that mtDNA mutations are directly responsible for the initiation of tumor onset. Based on a model of gliomagenesis in the mouse, we aimed to explore whether or not mtDNA mutations are associated with the initiation of tumor formation, maintenance and aggressiveness. We reproduced the different molecular events that lead from tumor initiation to progression in the mouse glioma. In human gliomas, most of the genetic alterations that have been previously identified result in the aberrant activation of different signaling pathways and deregulation of the cell cycle. Our data indicates that mitochondrial dysfunction is associated with reactive oxygen species (ROS) generation, leading to increased nuclear DNA (nDNA) mutagenesis, but maintaining the integrity of the mitochondrial genome. In addition, mutational stability has been observed in entire mtDNA of human gliomas; this is in full agreement with the results obtained in the cancer mouse model. We use this model as a paradigm of oncogenic transformation due to the fact that mutations commonly found in gliomas appear to be the most common molecular alterations leading to tumor development in most types of human cancer. Our results indicate that the mtDNA genome is kept by the cell as a “genetic sanctuary” during tumor development in the mouse and humans. This is compatible with the hypothesis that the mtDNA molecule plays an essential role in the control of the cellular adaptive survival response to tumor-induced oxidative stress. The integrity of mtDNA seems to be a necessary element for responding to the increased ROS production associated with the oncogenic process

    The role of morphine in regulation of cancer cell growth

    Get PDF
    Morphine is considered the “gold standard” for relieving pain and is currently one of the most effective drugs available clinically for the management of severe pain associated with cancer. In addition to its use in the treatment of pain, morphine appears to be important in the regulation of neoplastic tissue. Although morphine acts directly on the central nervous system to relieve pain, its activities on peripheral tissues are responsible for many of the secondary complications. Therefore, understanding the impact, other than pain control, of morphine on cancer treatment is extremely important. The effect of morphine on tumor growth is still contradictory, as both growth-promoting and growth-inhibiting effects have been observed. Accumulating evidence suggests that morphine can affect proliferation and migration of tumor cells as well as angiogenesis. Various signaling pathways have been suggested to be involved in these extra-analgesic effects of morphine. Suppression of immune system by morphine is an additional complication. This review provides an update on the influence of morphine on the growth and migration potential of tumor cells

    Regulation of Apoptotic Mediators Reveals Dynamic Responses to Thermal Stress in the Reef Building Coral Acropora millepora

    Get PDF
    Background: Mass coral bleaching is increasing in scale and frequency across the world's coral reefs and is being driven primarily by increased levels of thermal stress arising from global warming. In order to understand the impacts of projected climate change upon corals reefs, it is important to elucidate the underlying cellular mechanisms that operate during coral bleaching and subsequent mortality. In this respect, increased apoptotic cell death activity is an important cellular process that is associated with the breakdown of the mutualistic symbiosis between the cnidarian host and their dinoflagellate symbionts

    Kaposi's Sarcoma Herpesvirus microRNAs Target Caspase 3 and Regulate Apoptosis

    Get PDF
    Kaposi's sarcoma herpesvirus (KSHV) encodes a cluster of twelve micro (mi)RNAs, which are abundantly expressed during both latent and lytic infection. Previous studies reported that KSHV is able to inhibit apoptosis during latent infection; we thus tested the involvement of viral miRNAs in this process. We found that both HEK293 epithelial cells and DG75 cells stably expressing KSHV miRNAs were protected from apoptosis. Potential cellular targets that were significantly down-regulated upon KSHV miRNAs expression were identified by microarray profiling. Among them, we validated by luciferase reporter assays, quantitative PCR and western blotting caspase 3 (Casp3), a critical factor for the control of apoptosis. Using site-directed mutagenesis, we found that three KSHV miRNAs, miR-K12-1, 3 and 4-3p, were responsible for the targeting of Casp3. Specific inhibition of these miRNAs in KSHV-infected cells resulted in increased expression levels of endogenous Casp3 and enhanced apoptosis. Altogether, our results suggest that KSHV miRNAs directly participate in the previously reported inhibition of apoptosis by the virus, and are thus likely to play a role in KSHV-induced oncogenesis
    corecore