7,330 research outputs found

    Null-stream veto for two co-located detectors: Implementation issues

    Full text link
    Time-series data from multiple gravitational wave (GW) detectors can be linearly combined to form a null-stream, in which all GW information will be cancelled out. This null-stream can be used to distinguish between actual GW triggers and spurious noise transients in a search for GW bursts using a network of detectors. The biggest source of error in the null-stream analysis comes from the fact that the detector data are not perfectly calibrated. In this paper, we present an implementation of the null-stream veto in the simplest network of two co-located detectors. The detectors are assumed to have calibration uncertainties and correlated noise components. We estimate the effect of calibration uncertainties in the null-stream veto analysis and propose a new formulation to overcome this. This new formulation is demonstrated by doing software injections in Gaussian noise.Comment: Minor changes; To appear in Class. Quantum Grav. (Proc. GWDAW10

    The one-way unlocalizable quantum discord

    Full text link
    In this paper, we present the concept of the one-way unlocalizable quantum discord and investigate its properties. We provide a polygamy inequality for it in tripartite pure quantum system of arbitrary dimension. Several tradeoff relations between the one-way unlocalizable quantum discord and other correlations are given. If the von Neumann measurement is on a part of the system, we give two expressions of the one-way unlocalizable quantum discord in terms of partial distillable entanglement and quantum disturbance. Finally, we also provide a lower bound for bipartite shareability of quantum correlation beyond entanglement in a tripartite system.Comment: 6 pages, 3 figures. Minor corrections, references adde

    The long egress of GJ~436b's giant exosphere

    Full text link
    The M dwarf GJ 436 hosts a transiting warm Neptune known to experience atmospheric escape. Previous observations revealed the presence of a giant hydrogen exosphere transiting the star for more than 5 h, and absorbing up to 56% of the flux in the blue wing of the stellar Lyman-{\alpha} line of neutral hydrogen (H i Ly{\alpha}). The unexpected size of this comet-like exosphere prevented observing the full transit of its tail. In this Letter, we present new Ly{\alpha} observations of GJ 436 obtained with the Space Telescope Imaging Spectrograph (STIS) instrument onboard the Hubble Space Telescope. The stability of the Ly{\alpha} line over six years allowed us to combine these new observations with archival data sets, substantially expanding the coverage of the exospheric transit. Hydrogen atoms in the tail of the exospheric cloud keep occulting the star for 10-25 h after the transit of the planet, remarkably confirming a previous prediction based on 3D numerical simulations with the EVaporating Exoplanet code (EVE). This result strengthens the interpretation that the exosphere of GJ 436b is shaped by both radiative braking and charge exchanges with the stellar wind. We further report flux decreases of 15 +/- 2% and 47 +/- 10% in the red wing of the Ly{\alpha} line and in the line of ionised silicon (Si iii). Despite some temporal variability possibly linked with stellar activity, these two signals occur during the exospheric transit and could be of planetary origin. Follow-up observations will be required to assess the possibility that the redshifted Ly{\alpha} and Si iii absorption signatures arise from interactions between the exospheric flow and the magnetic field of the star.Comment: 10 pages, 7 figures, published in A&

    Rare Decays with a Light CP-Odd Higgs Boson in the NMSSM

    Full text link
    We have previously proposed a light pseudoscalar Higgs boson in the next-to-minimal supersymmetric standard model (NMSSM), the A_1^0, as a candidate to explain the HyperCP observations in Sigma^+ -> p mu^+ mu^-. In this paper we calculate the rates for several other rare decay modes that can help confirm or refute this hypothesis. The first modes we evaluate are K_L -> pi pi A_1^0, which are interesting because they are under study by the KTeV Collaboration. We next turn to eta -> pi pi A_1^0, which are interesting because they are independent of the details of the flavor-changing sector of the NMSSM and may be accessible at DAPhNE. For completeness, we also evaluate Omega^- -> Xi^- A_1^0.Comment: 17 pages, 11 figure

    Flow reversals in thermally driven turbulence

    Get PDF
    We analyze the reversals of the large scale flow in Rayleigh-B\'enard convection both through particle image velocimetry flow visualization and direct numerical simulations (DNS) of the underlying Boussinesq equations in a (quasi) two-dimensional, rectangular geometry of aspect ratio 1. For medium Prandtl number there is a diagonal large scale convection roll and two smaller secondary rolls in the two remaining corners diagonally opposing each other. These corner flow rolls play a crucial role for the large scale wind reversal: They grow in kinetic energy and thus also in size thanks to plume detachments from the boundary layers up to the time that they take over the main, large scale diagonal flow, thus leading to reversal. Based on this mechanism we identify a typical time scale for the reversals. We map out the Rayleigh number vs Prandtl number phase space and find that the occurrence of reversals very sensitively depends on these parameters.Comment: 4 pages, 4 figure

    Bayesian detection of unmodeled bursts of gravitational waves

    Full text link
    The data analysis problem of coherently searching for unmodeled gravitational-wave bursts in the data generated by a global network of gravitational-wave observatories has been at the center of research for almost two decades. As data from these detectors is starting to be analyzed, a renewed interest in this problem has been sparked. A Bayesian approach to the problem of coherently searching for gravitational wave bursts with a network of ground-based interferometers is here presented. We demonstrate how to systematically incorporate prior information on the burst signal and its source into the analysis. This information may range from the very minimal, such as best-guess durations, bandwidths, or polarization content, to complete prior knowledge of the signal waveforms and the distribution of sources through spacetime. We show that this comprehensive Bayesian formulation contains several previously proposed detection statistics as special limiting cases, and demonstrate that it outperforms them.Comment: 18 pages, 3 figures, revisions based on referee comment
    • 

    corecore