5,712 research outputs found

    Inferring Core-Collapse Supernova Physics with Gravitational Waves

    Get PDF
    Stellar collapse and the subsequent development of a core-collapse supernova explosion emit bursts of gravitational waves (GWs) that might be detected by the advanced generation of laser interferometer gravitational-wave observatories such as Advanced LIGO, Advanced Virgo, and LCGT. GW bursts from core-collapse supernovae encode information on the intricate multi-dimensional dynamics at work at the core of a dying massive star and may provide direct evidence for the yet uncertain mechanism driving supernovae in massive stars. Recent multi-dimensional simulations of core-collapse supernovae exploding via the neutrino, magnetorotational, and acoustic explosion mechanisms have predicted GW signals which have distinct structure in both the time and frequency domains. Motivated by this, we describe a promising method for determining the most likely explosion mechanism underlying a hypothetical GW signal, based on Principal Component Analysis and Bayesian model selection. Using simulated Advanced LIGO noise and assuming a single detector and linear waveform polarization for simplicity, we demonstrate that our method can distinguish magnetorotational explosions throughout the Milky Way (D <~ 10kpc) and explosions driven by the neutrino and acoustic mechanisms to D <~ 2kpc. Furthermore, we show that we can differentiate between models for rotating accretion-induced collapse of massive white dwarfs and models of rotating iron core collapse with high reliability out to several kpc.Comment: 22 pages, 9 figure

    Coupled KdV equations derived from atmospherical dynamics

    Full text link
    Some types of coupled Korteweg de-Vries (KdV) equations are derived from an atmospheric dynamical system. In the derivation procedure, an unreasonable yy-average trick (which is usually adopted in literature) is removed. The derived models are classified via Painlev\'e test. Three types of Ï„\tau-function solutions and multiple soliton solutions of the models are explicitly given by means of the exact solutions of the usual KdV equation. It is also interesting that for a non-Painlev\'e integrable coupled KdV system there may be multiple soliton solutions.Comment: 19 pages, 2 figure

    Search for D to phi l nu and measurement of the branching fraction for D to phi pi

    Full text link
    Using a data sample of integrated luminosity of about 33 pb−1^{-1} collected around 3.773 GeV with the BESII detector at the BEPC collider, the semileptonic decays D+→ϕe+νeD^+ \to \phi e ^+\nu_e, D+→ϕμ+νμD^+ \to \phi \mu^+\nu_\mu and the hadronic decay D+→ϕπ+D^+ \to \phi \pi^+ are studied. The upper limits of the branching fractions are set to be BF(D+→ϕe+νe)<BF(D^+ \to \phi e ^+\nu_e) < 2.01% and BF(D+→ϕμ+νμ)<BF(D^+ \to \phi \mu^+ \nu_\mu) < 2.04% at the 90% confidence level. The ratio of the branching fractions for D+→ϕπ+D^+ \to \phi \pi^+ relative to D+→K−π+π+D^+ \to K^-\pi^+\pi^+ is measured to be 0.057±0.011±0.0030.057 \pm 0.011 \pm 0.003. In addition, the branching fraction for D+→ϕπ+D^+ \to \phi \pi^+ is obtained to be (5.2±1.0±0.4)×10−3(5.2 \pm 1.0 \pm 0.4) \times 10^{-3}.Comment: 6 pages, 5 figures, to be published in Eur.Phys.J.

    Measurements of branching fractions for inclusive K0~/K0 and K*(892)+- decays of neutral and charged D mesons

    Get PDF
    Using the data sample of about 33 pb-1 collected at and around 3.773 GeV with the BES-II detector at the BEPC collider, we have studied inclusive K0~/K0 and K*(892)+- decays of D0 and D+ mesons. The branching fractions for the inclusive K0~/K0 and K*(892)- decays are measured to be BF(D0 to K0~/K0 X)=(47.6+-4.8+-3.0)%, BF(D+ to K0~/K0 X)=(60.5+-5.5+-3.3)%, BF(D0 to K*- X)=(15.3+- 8.3+- 1.9)% and BF(D+ to K*- X)=(5.7+- 5.2+- 0.7)%. The upper limits of the branching fractions for the inclusive K*(892)+ decays are set to be BF(D0 to K*+ X)<3.6% and BF(D+ to K*+ X) <20.3% at 90% confidence level

    Direct Measurements of the Branching Fractions for Inclusive K±K^\pm and Inclusive Semileptonic Decays of D+D^+ and D0D^0 Mesons

    Full text link
    With singly-tagged Dˉ\bar D samples selected from the data collected at and around 3.773 GeV with the BESII detector at the BEPC collider, we have measured the branching fractions for the inclusive K±K^\pm decays of D+D^+ and D0D^0 mesons, which are BF(D+→K−X)=(24.7±1.3±1.2)BF(D^+\to K^-X) = (24.7 \pm 1.3 \pm 1.2)%, BF(D+→K+X)=(6.1±0.9±0.4)BF(D^+\to K^+X) = (6.1 \pm 0.9 \pm 0.4) %, BF(D0→K−X)=(57.8±1.6±3.2)BF(D^0\to K^-X) = (57.8 \pm 1.6 \pm 3.2) % and BF(D0→K+X)=(3.5±0.7±0.3)BF(D^0\to K^+X) = (3.5 \pm 0.7 \pm 0.3) %, respectively. We have also measured the branching fractions for the inclusive semileptonic decays of D+D^+ and D0D^0 mesons to be BF(D+→e+X)=(15.2±0.9±0.8)BF(D^+ \to e^+ X)=(15.2 \pm 0.9 \pm 0.8)% and BF(D0→e+X)=(6.3±0.7±0.4)BF(D^0 \to e^+ X) =(6.3 \pm 0.7 \pm 0.4) %. These yield the ratio of their partial widths to be Γ(D+→e+X)/Γ(D0→e+X)=0.95±0.12±0.07\Gamma(D^+ \to e^+X)/\Gamma(D^0 \to e^+X)=0.95 \pm 0.12 \pm 0.07.Comment: 6 pages, 5 figure

    The unstable CO2 feedback cycle on ocean planets

    Get PDF
    Ocean planets are volatile-rich planets, not present in our Solar system, which are thought to be dominated by deep, global oceans. This results in the formation of high-pressure water ice, separating the planetary crust from the liquid ocean and, thus, also from the atmosphere. Therefore, instead of a carbonate-silicate cycle like on the Earth, the atmospheric carbon dioxide concentration is governed by the capability of the ocean to dissolve carbon dioxide (CO2). In our study, we focus on the CO2 cycle between the atmosphere and the ocean which determines the atmospheric CO2 content. The atmospheric amount of CO2 is a fundamental quantity for assessing the potential habitability of the planet's surface because of its strong greenhouse effect, which determines the planetary surface temperature to a large degree. In contrast to the stabilizing carbonate-silicate cycle regulating the long-term CO2 inventory of the Earth atmosphere, we find that the CO2 cycle feedback on ocean planets is negative and has strong destabilizing effects on the planetary climate. By using a chemistry model for oceanic CO2 dissolution and an atmospheric model for exoplanets, we show that the CO2 feedback cycle can severely limit the extension of the habitable zone for ocean planet

    Fast DNA translocation through a solid-state nanopore

    Full text link
    We report translocation experiments on double-strand DNA through a silicon oxide nanopore. Samples containing DNA fragments with seven different lengths between 2000 to 96000 basepairs have been electrophoretically driven through a 10 nm pore. We find a power-law scaling of the translocation time versus length, with an exponent of 1.26 ±\pm 0.07. This behavior is qualitatively different from the linear behavior observed in similar experiments performed with protein pores. We address the observed nonlinear scaling in a theoretical model that describes experiments where hydrodynamic drag on the section of the polymer outside the pore is the dominant force counteracting the driving. We show that this is the case in our experiments and derive a power-law scaling with an exponent of 1.18, in excellent agreement with our data.Comment: 5 pages, 2 figures. Submitted to PR
    • …
    corecore