2,678 research outputs found

    Directional solidification of flake and nodular cast iron during KC-135 low-g maneuvers

    Get PDF
    Alloys solidified in a low-gravity environment can, due to the elimination of sedimentation and convection, form unique and often desirable microstructures. One method of studying the effects of low-gravity (low-g) on alloy solidification was the use of the NASA KC-135 aircraft flying repetitive low-g maneuvers. Each maneuver gives from 20 to 30 seconds of low-g which is between about 0.1 and 0.001 gravity. A directional solidification furnace was used to study the behavior of off eutectic composition case irons in a low-g environment. The solidification interface of hypereutectic flake and spheroidal graphite case irons was slowly advanced through a rod sample, 5 mm in diameter. Controlled solidification was continued through a number of aircraft parabolas. The known solidification rate of the sample was then correlated with accelerometer data to determine the gravity level during solidification for any location of the sample. The thermal gradient and solidification rate were controlled independently. Samples run on the KC-135 aircraft exhibited bands of coarser graphite or of larger nodules usually corresponding to the regions solidified under low-g. Samples containing high phosphorous (used in order to determine the eutectic cell) exhibited larger eutectic cells in the low-g zone, followed by a band of coarser graphite

    Preliminary science report on the directional solidification of hypereutectic cast iron during KC-135 low-G maneuvers

    Get PDF
    An ADSS-P directional solidification furnace was reconfigured for operation on the KC-135 low-g aircraft. The system offers many advantages over quench ingot methods for study of the effects of sedimentation and convection on alloy formation. The directional sodification furnace system was first flown during the September 1982 series of flights. The microstructure of the hypereutectic cast iron sample solidified on one of these flights suggests a low-g effect on graphite morphology. Further experiments are needed to ascertain that this effect is due to low-gravity and to deduce which of the possible mechanisms is responsible for it

    Development of a Quantitative Flaw Characterization Module — A Status Report

    Get PDF
    Ultrasonic waves returning from an internal bulk flaw to a wideband transducer contain information on several characteristics of this flaw. Measurements made with waves of different mode, dominant frequency, incidence angle, beamwidth, etc. are, therefore, necessary to solve the inverse problem for flaw composition, size, and orientation in an unambiguous manner. The plan for the development of a reliable and accurate volumetric-flaw characterization module encompasses three basic elements: a transducer selection protocol, a deconvolution algorithm, and the Born as well as the Franz-Gruber (satellite pulse) models for the interaction of weakly and strongly scattering internal bulk flaws, respectively. The flaw-diameter estimates obtained by applying the Born Inversion Technique (BIT) and the Satellite-Pulse Observation Technique (SPOT), based on the above models, to the results of ultrasonic backscattering experiments are compared in this paper with the nominal effective diameters of five spherical voids in a titanium-alloy specimen tested under blind conditions

    Using a neural network approach to accelerate disequilibrium chemistry calculations in exoplanet atmospheres

    Full text link
    In this era of exoplanet characterisation with JWST, the need for a fast implementation of classical forward models to understand the chemical and physical processes in exoplanet atmospheres is more important than ever. Notably, the time-dependent ordinary differential equations to be solved by chemical kinetics codes are very time-consuming to compute. In this study, we focus on the implementation of neural networks to replace mathematical frameworks in one-dimensional chemical kinetics codes. Using the gravity profile, temperature-pressure profiles, initial mixing ratios, and stellar flux of a sample of hot-Jupiters atmospheres as free parameters, the neural network is built to predict the mixing ratio outputs in steady state. The architecture of the network is composed of individual autoencoders for each input variable to reduce the input dimensionality, which is then used as the input training data for an LSTM-like neural network. Results show that the autoencoders for the mixing ratios, stellar spectra, and pressure profiles are exceedingly successful in encoding and decoding the data. Our results show that in 90% of the cases, the fully trained model is able to predict the evolved mixing ratios of the species in the hot-Jupiter atmosphere simulations. The fully trained model is ~1000 times faster than the simulations done with the forward, chemical kinetics model while making accurate predictions.Comment: 13 pages, 9 figures, accepted for publication at MNRA

    Impact of Brown Midrib Trait on the Decomposition Rate of Sorghum-Sudangrass Residue in Pastures

    Get PDF
    Sorghum-sudangrass (Sorghum bicolor var. bicolor x bicolor var. sudanense) can provide high quality summer grazing. Some varieties possess the brown midrib (BMR) trait which results in reduced lignin resulting in higher digestibility and animal performance. If microbes in the rumen can digest BMR sorghum-sudangrass more completely, then soil macro/micro flora and fauna may do so as well. This could result in nutrients being returned to the soil faster from plants containing the BMR trait. The objective of this study was to determine the decomposition rate of BMR and non-BMR sorghumsudangrass. The experimental design was a random complete with four replications. Sorghum-sudangrass with and without the BMR trait was placed in litter decomposition bags as whole plants or divided into leaves and stems. A composite sample was taken when bags were loaded to determine initial dry matter. Loaded bags were then placed on the soil surface in a pasture and collected at 1, 2, 3, 4, 6, 8, 10, 12, 14, or 16 weeks after placement. Upon collection plant material was dried for 3-days at 55°C in a forced air oven. Dry weights at each collection date were subtracted from the initial dry weight to determine total DM loss. The BMR trait did not impact dry matter loss in the leaves. Stems possessing the BMR trait lost dry matter at a greater rate resulting in dry matter losses at 14 weeks of 78 and 68% and 59 and 47% for the BMR and non-BMR varieties in trials 1 and 2, respectively. Whole plants showed limited differences in dry matter loss at 14 weeks after placement

    Genome landscapes and bacteriophage codon usage

    Get PDF
    Across all kingdoms of biological life, protein-coding genes exhibit unequal usage of synonmous codons. Although alternative theories abound, translational selection has been accepted as an important mechanism that shapes the patterns of codon usage in prokaryotes and simple eukaryotes. Here we analyze patterns of codon usage across 74 diverse bacteriophages that infect E. coli, P. aeruginosa and L. lactis as their primary host. We introduce the concept of a `genome landscape,' which helps reveal non-trivial, long-range patterns in codon usage across a genome. We develop a series of randomization tests that allow us to interrogate the significance of one aspect of codon usage, such a GC content, while controlling for another aspect, such as adaptation to host-preferred codons. We find that 33 phage genomes exhibit highly non-random patterns in their GC3-content, use of host-preferred codons, or both. We show that the head and tail proteins of these phages exhibit significant bias towards host-preferred codons, relative to the non-structural phage proteins. Our results support the hypothesis of translational selection on viral genes for host-preferred codons, over a broad range of bacteriophages.Comment: 9 Color Figures, 5 Tables, 53 Reference

    A New Understanding of the Europa Atmosphere and Limits on Geophysical Activity

    Get PDF
    Deep extreme ultraviolet spectrograph exposures of the plasma sheet at the orbit of Europa, obtained in 2001 using the Cassini Ultraviolet Imaging Spectrograph experiment, have been analyzed to determine the state of the gas. The results are in basic agreement with earlier results, in particular with Voyager encounter measurements of electron density and temperature. Mass loading rates and lack of detectable neutrals in the plasma sheet, however, are in conflict with earlier determinations of atmospheric composition and density at Europa. A substantial fraction of the plasma species at the Europa orbit are long-lived sulfur ions originating at Io, with ~25% derived from Europa. During the outward radial diffusion process to the Europa orbit, heat deposition forces a significant rise in plasma electron temperature and latitudinal size accompanied with conversion to higher order ions, a clear indication that mass loading from Europa is very low. Analysis of far ultraviolet spectra from exposures on Europa leads to the conclusion that earlier reported atmospheric measurements have been misinterpreted. The results in the present work are also in conflict with a report that energetic neutral particles imaged by the Cassini ion and neutral camera experiment originate at the Europa orbit. An interpretation of persistent energetic proton pitch angle distributions near the Europa orbit as an effect of a significant population of neutral gas is also in conflict with the results of the present work. The general conclusion drawn here is that Europa is geophysically far less active than inferred in previous research, with mass loading of the plasma sheet ≤4.5 x 10^(25) atoms s^(-1) two orders of magnitude below earlier published calculations. Temporal variability in the region joining the Io and Europa orbits, based on the accumulated evidence, is forced by the response of the system to geophysical activity at Io. No evidence for the direct injection of H_2O into the Europa atmosphere or from Europa into the magnetosphere system, as has been observed at Enceladus in the Saturn system, is obtained in the present investigation

    Equilibrium Sampling From Nonequilibrium Dynamics

    Full text link
    We present some applications of an Interacting Particle System (IPS) methodology to the field of Molecular Dynamics. This IPS method allows several simulations of a switched random process to keep closer to equilibrium at each time, thanks to a selection mechanism based on the relative virtual work induced on the system. It is therefore an efficient improvement of usual non-equilibrium simulations, which can be used to compute canonical averages, free energy differences, and typical transitions paths
    • …
    corecore