7 research outputs found

    Phase II Multicenter Clinical Trial of Pulmonary Metastasectomy and Isolated Lung Perfusion with Melphalan in Patients with Resectable Lung Metastases

    Get PDF
    IntroductionThe 5-year overall survival rate of patients undergoing complete surgical resection of pulmonary metastases (PM) from colorectal cancer (CRC) and sarcoma remains low (20–50%). Local recurrence rate is high (48–66%). Isolated lung perfusion (ILuP) allows the delivery of high-dose locoregional chemotherapy with minimal systemic leakage to improve local control.MethodsFrom 2006 to 2011, 50 patients, 28 male, median age 57 years (15–76), with PM from CRC (n = 30) or sarcoma (n = 20) were included in a phase II clinical trial conducted in four cardiothoracic surgical centers. In total, 62 ILuP procedures were performed, 12 bilaterally, with 45 mg of melphalan at 37°C, followed by resection of all palpable PM. Survival was calculated according to the Kaplan–Meier method.ResultsOperative mortality was 0%, and 90-day morbidity was mainly respiratory (grade 3: 42%, grade 4: 2%). After a median follow-up of 24 months (3–63 mo), 18 patients died, two without recurrence. Thirty patients had recurrent disease. Median time to local pulmonary progression was not reached. The 3-year overall survival and disease-free survival were 57% ± 9% and 36% ± 8%, respectively. Lung function data showed a decrease in forced expiratory volume in 1 second and diffusing capacity of the alveolocapillary membrane of 21.6% and 25.8% after 1 month, and 10.4% and 11.3% after 12 months, compared with preoperative values.ConclusionCompared with historical series of PM resection without ILuP, favorable results are obtained in terms of local control without long-term adverse effects. These data support the further investigation of ILuP as additional treatment in patients with resectable PM from CRC or sarcoma

    Prognostic implications of cellular senescence in resected non-small cell lung cancer

    Get PDF
    Background: Cure and long-term survival for non-small cell lung cancer (NSCLC) remains hard to achieve. Cellular senescence, an emerging hallmark of cancer, is considered as an endogenous tumor suppressor mechanism. However, senescent cancer cells can paradoxically affect the surrounding tumor microenvironment (TME), ultimately leading to cancer relapse and metastasis. As such, the role of cellular senescence in cancer is highly controversial. Methods: In 155 formalin-fixed paraffin-embedded (FFPE) samples from surgically resected NSCLC patients with pathological tumor-node-metastasis (pTNM) stages I-IV (8th edition), cellular senescence was assessed using a combination of four immunohistochemical senescence markers, i.e., lipofuscin, p16INK4a, p21WAF1/Cip1 and Ki67, and correlated to clinicopathological parameters and outcomes, including overall survival (OS) and disease-free survival (DFS). Results: A tumoral senescence signature (SS) was present in 48 out of 155 NSCLC patients, but did not correlate to any clinicopathological parameter, except for p53 mutation status. In a histologically homogenous patient cohort of 100 patients who fulfilled the following criteria: (I) one type of histology, i.e., adenocarcinoma, (II) without known epidermal growth factor receptor (EGFR) mutation, (III) curative (R0) resection and (IV) no neoadjuvant systemic therapy or radiotherapy, the median OS and DFS for patients with a tumoral SS (n=30, 30.0%) compared to patients without a tumoral SS (n=70, 70.0%) was 53 versus 141 months (P=0.005) and 45 versus 55 months (P=0.25), respectively. In multiple Cox proportional hazards (Cox PH) model analysis correcting for age, pTNM stage I-III and adjuvant therapy, a tumoral SS remained a significant prognostic factor for OS (HR =2.03; P=0.014). Conclusions: The presence of a tumoral SS particularly based on high p16INK4a expression significantly affects OS in NSCLC adenocarcinoma. In this light, adjuvant senolytic therapy could be an interesting strategy for NSCLC patients harboring a tumoral SS, ultimately to improve survival of these patients

    Robotic Surgery for the Thoracic and Vascular Surgeon

    No full text
    In the last two decades, robotic-assisted approaches have gained popularity as alternatives to conventional open and minimal-invasive surgery (MIS). The robotic approach combines the concepts of the traditional MIS with the latest technological advancements, enabling the surgeon to control the instrumentation using a robotic device connected to a remote console. With this approach, the surgeon obviates the known drawbacks of conventional MIS, such as the reduced in-depth perception and hand-eye coordination. Since its introduction, numerous robotic-assisted procedures have been developed and tested across nearly all surgical fields. Data from previous studies have shown that a great majority of these techniques are feasible and have favourable treatment outcomes. In the field of thoracic and vascular surgery, two disciplines often combined in Belgium, robotic approaches have been implemented in the treatment of a wide array of disorders including lung cancer, mediastinal tumours, thoracic outlet syndrome, diaphragmatic paralysis, sympathectomy, aortobifemoral bypass surgery and division of the arcuate ligament for median arcuate ligament syndrome (MALS). Despite this increasing popularity, there are still a number of controversies regarding robotic surgery. There are only limited data on the cost-effectiveness of robotic surgery and its objective proven benefit over conventional MIS. In this review, we summarise the latest data on robotic approaches for the most relevant thoracic and vascular disorders
    corecore