9 research outputs found

    The NMDA receptor M3 segment is a conserved transduction element coupling ligand binding to channel opening

    No full text
    Ion channels alternate stochastically between two functional states, open and closed. This gating behavior is controlled by membrane potential or by the binding of neurotransmitters in voltage- and ligand-gated channels, respectively. Although much progress has been made in defining the structure and function of the ligand-binding cores and the voltage sensors, how these domains couple to channel opening remains poorly understood. Here we show that the M3 transmembrane segments of the NMDA receptor allosterically interact with both the ligand-binding cores and the channel gate. It is proposed that M3 functions as a transduction element whose conformational change couples ligand binding with channel opening. Furthermore, amino acid homology between glutamate receptor M3 segments and the equivalent S6 or TM2 segments in K(+) channels suggests that ion channel activation and gating are both structurally and functionally conserved

    Activation-Dependent Subconductance Levels in the drk1 K Channel Suggest a Subunit Basis for Ion Permeation and Gating

    Get PDF
    Ion permeation and channel opening are two fundamental properties of ion channels, the molecular bases of which are poorly understood. Channels can exist in two permeability states, open and closed. The relative amount of time a channel spends in the open conformation depends on the state of activation. In voltage-gated ion channels, activation involves movement of a charged voltage sensor, which is required for channel opening. Single-channel recordings of drk1 K channels expressed in Xenopus oocytes suggested that intermediate current levels (sublevels) may be associated with transitions between the closed and open states. Because K channels are formed by four identical subunits, each contributing to the lining of the pore, it was hypothesized that these sublevels resulted from heteromeric pore conformations. A formal model based on this hypothesis predicted that sublevels should be more frequently observed in partially activated channels, in which some but not all subunits have undergone voltage-dependent conformational changes required for channel opening. Experiments using the drk1 K channel, as well as drk1 channels with mutations in the pore and in the voltage sensor, showed that the probability of visiting a sublevel correlated with voltage- and time-dependent changes in activation. A subunit basis is proposed for channel opening and permeation in which these processes are coupled

    Ligand-Binding Residues Integrate Affinity and Efficacy in the NMDA Receptor

    No full text
    corecore