13 research outputs found

    A Global Agenda for Advancing Freshwater Biodiversity Research

    Get PDF
    Global freshwater biodiversity is declining dramatically, and meeting the challenges of this crisis requires bold goals and the mobilisation of substantial resources. While the reasons are varied, investments in both research and conservation of freshwater biodiversity lag far behind those in the terrestrial and marine realms. Inspired by a global consultation, we identify 15 pressing priority needs, grouped into five research areas, in an effort to support informed stewardship of freshwater biodiversity. The proposed agenda aims to advance freshwater biodiversity research globally as a critical step in improving coordinated actions towards its sustainable management and conservation

    A global agenda for advancing freshwater biodiversity research

    Get PDF
    Global freshwater biodiversity is declining dramatically, and meeting the challenges of this crisis requires bold goals and the mobilisation of substantial resources. While the reasons are varied, investments in both research and conservation of freshwater biodiversity lag far behind those in the terrestrial and marine realms. Inspired by a global consultation, we identify 15 pressing priority needs, grouped into five research areas, in an effort to support informed stewardship of freshwater biodiversity. The proposed agenda aims to advance freshwater biodiversity research globally as a critical step in improving coordinated actions towards its sustainable management and conservation.Peer reviewe

    Climate change impacts on ecologically relevant hydrological indicators in three catchments in three European ecoregions

    No full text
    Freshwater species are adapted to and depend on various discharge conditions, such as 32 indicators of hydrologic alteration (IHA). Knowing how these indicators will be altered under climate change is essential for predicting species response and to develop mitigation concepts. The simulation of IHA under climate change is subject to considerable uncertainties which should be considered to obtain credible and robust predictions. Therefore, we investigated the major uncertainties inherent in climate change data and processing: general circulation model (GCM) and regional climate model (RCM) choice, representative concentration pathway (RCP) scenario, bias correction (BC) method, all within three mesoscale catchments in the European ecoregions: Central Plains, Central Highlands, and Alpine. Highest uncertainties were caused by the GCM and RCM choice, followed by the type of BC and the RCP. For the prediction, we reduced these uncertainties tailored to the ideal depiction of the IHA in each ecoregion. Together with a significance test, this enabled a robust depiction of the change in IHA for two future time periods. We found diverging changes within the ecoregions, caused by the complex interaction between precipitation, temperature and the governing catchment hydrological processes. The results provide an important basis for further impact research, especially for ecological freshwater studies
    corecore