27,559 research outputs found
Novel Method of Measuring Electron Positron Colliding Beam Parameters
Through the simultaneous measurement of the transverse size as a function of
longitudinal position, and the longitudinal distribution of luminosity, we are
able to measure the (vertical envelope function at the collision
point), vertical emittance, and bunch length of colliding beams at the Cornell
Electron-positron Storage Ring (CESR). This measurement is possible due to the
significant ``hourglass'' effect at CESR and the excellent tracking resolution
of the CLEO detector.Comment: 11 pages, 4 figures, submitted to NIM
Cytokine gene polymorphisms in preterm infants with necrotising enterocolitis: genetic association study
BACKGROUND The inflammatory cytokine cascade is implicated in the pathogenesis of necrotising enterocolitis (NEC). Genetic association studies of cytokine polymorphisms may help to detect molecular mechanisms that are causally related to the disease process. AIM To examine associations between the common genetic variants in candidate inflammatory cytokine genes and NEC in preterm infants. METHODS Multi-centre case-control and genetic association study. DNA samples were collected from 50 preterm infants with NEC and 50 controls matched for gestational age and ethnic group recruited to a multi-centre case-control study. Ten candidate single-nucleotide polymorphisms in cytokines previously associated with infectious or inflammatory diseases were genotyped. The findings were included in random-effects meta-analyses with data from previous genetic association studies. RESULTS All allele distributions were in Hardy-Weinberg equilibrium. None of the studied cytokine polymorphisms was significantly associated with NEC. Four previous genetic association studies of cytokine polymorphisms and NEC in preterm infants were found. Meta-analyses were possible for several single-nucleotide polymorphisms. These increased the precision of the estimates of effect size but did not reveal any significant associations. CONCLUSIONS The available data are not consistent with more than modest associations between these candidate cytokine variant alleles and NEC in preterm infants. Data from future association studies of these polymorphisms may be added to the meta-analyses to obtain more precise estimates of effects sizes.The study was funded by Tenovus (Scotland)
Engineering entanglement for metrology with rotating matter waves
Entangled states of rotating, trapped ultracold bosons form a very promising scenario for quantum metrology. In order to employ such states for metrology, it is vital to understand their detailed form and the enhanced accuracy with which they could measure phase, in this case generated through rotation. In this work, we study the rotation of ultracold bosons in an asymmetric trapping potential beyond the lowest Landau level (LLL) approximation. We demonstrate that while the LLL can identify reasonably the critical frequency for a quantum phase transition and entangled state generation, it is vital to go beyond the LLL to identify the details of the state and quantify the quantum Fisher information (which bounds the accuracy of the phase measurement). We thus identify a new parameter regime for useful entangled state generation, amenable to experimental investigation
Derivation of a Non-Local Interfacial Hamiltonian for Short-Ranged Wetting II: General Diagrammatic Structure
In our first paper, we showed how a non-local effective Hamiltionian for
short-ranged wetting may be derived from an underlying Landau-Ginzburg-Wilson
model. Here, we combine the Green's function method with standard perturbation
theory to determine the general diagrammatic form of the binding potential
functional beyond the double-parabola approximation for the
Landau-Ginzburg-Wilson bulk potential. The main influence of cubic and quartic
interactions is simply to alter the coefficients of the double parabola-like
zig-zag diagrams and also to introduce curvature and tube-interaction
corrections (also represented diagrammatically), which are of minor importance.
Non-locality generates effective long-ranged many-body interfacial interactions
due to the reflection of tube-like fluctuations from the wall. Alternative wall
boundary conditions (with a surface field and enhancement) and the diagrammatic
description of tricritical wetting are also discussed.Comment: (14 pages, 2 figures) Submitted J. Phys. Condens. Matte
Magnetic and thermodynamic properties of cobalt doped iron pyrite: Griffiths Phase in a magnetic semiconductor
Doping of the band insulator FeS with Co on the Fe site introduces a
small density of itinerant carriers and magnetic moments. The lattice constant,
AC and DC magnetic susceptibility, magnetization, and specific heat have been
measured over the range of Co concentration. The variation of
the AC susceptibility with hydrostatic pressure has also been measured in a
small number of our samples. All of these quantities show systematic variation
with including a paramagnetic to disordered ferromagnetic transition at
. A detailed analysis of the changes with temperature and
magnetic field reveal small power law dependencies at low temperatures for
samples near the critical concentration for magnetism, and just above the Curie
temperature at higher . In addition, the magnetic susceptibility and
specific heat are non-analytic around H=0 displaying an extraordinarily sharp
field dependence in this same temperature range. We interpret this behavior as
due to the formation of Griffiths phases that result from the quenched disorder
inherent in a doped semiconductor.Comment: 22 pages including 27 figure
Thermodynamically consistent description of the hydrodynamics of free surfaces covered by insoluble surfactants of high concentration
In this paper we propose several models that describe the dynamics of liquid
films which are covered by a high concentration layer of insoluble surfactant.
First, we briefly review the 'classical' hydrodynamic form of the coupled
evolution equations for the film height and surfactant concentration that are
well established for small concentrations. Then we re-formulate the basic model
as a gradient dynamics based on an underlying free energy functional that
accounts for wettability and capillarity. Based on this re-formulation in the
framework of nonequilibrium thermodynamics, we propose extensions of the basic
hydrodynamic model that account for (i) nonlinear equations of state, (ii)
surfactant-dependent wettability, (iii) surfactant phase transitions, and (iv)
substrate-mediated condensation. In passing, we discuss important differences
to most of the models found in the literature.Comment: 31 pages, 2 figure
Fluid structure in the immediate vicinity of an equilibrium three-phase contact line and assessment of disjoining pressure models using density functional theory
We examine the nanoscale behavior of an equilibrium three-phase contact line
in the presence of long-ranged intermolecular forces by employing a statistical
mechanics of fluids approach, namely density functional theory (DFT) together
with fundamental measure theory (FMT). This enables us to evaluate the
predictive quality of effective Hamiltonian models in the vicinity of the
contact line. In particular, we compare the results for mean field effective
Hamiltonians with disjoining pressures defined through (I) the adsorption
isotherm for a planar liquid film, and (II) the normal force balance at the
contact line. We find that the height profile obtained using (I) shows good
agreement with the adsorption film thickness of the DFT-FMT equilibrium density
profile in terms of maximal curvature and the behavior at large film heights.
In contrast, we observe that while the height profile obtained by using (II)
satisfies basic sum rules, it shows little agreement with the adsorption film
thickness of the DFT results. The results are verified for contact angles of
20, 40 and 60 degrees
Optimal Entanglement Generation from Quantum Operations
We consider how much entanglement can be produced by a non-local two-qubit
unitary operation, - the entangling capacity of . For a single
application of , with no ancillas, we find the entangling capacity and
show that it generally helps to act with on an entangled state.
Allowing ancillas, we present numerical results from which we can conclude,
quite generally, that allowing initial entanglement typically increases the
optimal capacity in this case as well. Next, we show that allowing collective
processing does not increase the entangling capacity if initial entanglement is
allowed.Comment: v1.0 15 pages, 3 figures, written in revtex4. v2.0 References
updated. Submitted to Phys. Rev. A v3.0 16 pages, 4 figures. Expanded
explanation in section 3A, figures corrected and made clearer. Definition of
entangling capacity in section 4 made explicit. Other minor typos correcte
Multifaceted contributions : health workers and smallpox eradication in India
Smallpox eradication in South Asia was a result of the efforts of many grades of health-workers. Working from within the confines of international organisations and government structures, the role of the field officials, who were of various nationalities and also drawn from the cities and rural enclaves of the countries in these regions, was crucial to the development and deployment of policies. However, the role of these personnel is often downplayed in official histories and academic histories, which highlight instead the roles played by a handful of senior officials within the World Health Organization and the federal governments in the sub-continent. This article attempts to provide a more rounded assessment of the complex situation in the field. In this regard, an effort is made to underline the great usefulness of the operational flexibility displayed by field officers, wherein lessons learnt in the field were made an integral part of deploying local campaigns; careful engagement with the communities being targeted, as well as the employment of short term workers from amongst them, was an important feature of this work
- …